3 resultados para SEASONAL VARIABILITY

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Information on phosphorus bioavailability can provide water quality managers with the support required to target point source and watershed loads contributing most significantly to water quality conditions. This study presents results from a limited sampling program focusing on the five largest sources of total phosphorus to the U.S. waters of the Great Lakes. The work provides validation of the utility of a bioavailability-based approach, confirming that the method is robust and repeatable. Chemical surrogates for bioavailability were shown to hold promise, however further research is needed to address site-to-site and seasonal variability before a universal relationship can be accepted. Recent changes in the relative contribution of P constituents to the total phosphorus analyte and differences in their bioavailability suggest that loading estimates of bioavailable P will need to address all three components (SRP, DOP and PP). A bioavailability approach, taking advantage of chemical surrogate methodologies is recommended as a means of guiding P management in the Great Lakes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A non-hierarchical K-means algorithm is used to cluster 47 years (1960–2006) of 10-day HYSPLIT backward trajectories to the Pico Mountain (PM) observatory on a seasonal basis. The resulting cluster centers identify the major transport pathways and collectively comprise a long-term climatology of transport to the observatory. The transport climatology improves our ability to interpret the observations made there and our understanding of pollution source regions to the station and the central North Atlantic region. I determine which pathways dominate transport to the observatory and examine the impacts of these transport patterns on the O3, NOy, NOx, and CO measurements made there during 2001–2006. Transport from the U.S., Canada, and the Atlantic most frequently reaches the station, but Europe, east Africa, and the Pacific can also contribute significantly depending on the season. Transport from Canada was correlated with the North Atlantic Oscillation (NAO) in spring and winter, and transport from the Pacific was uncorrelated with the NAO. The highest CO and O3 are observed during spring. Summer is also characterized by high CO and O3 and the highest NOy and NOx of any season. Previous studies at the station attributed the summer time high CO and O3 to transport of boreal wildfire emissions (for 2002–2004), and boreal fires continued to affect the station during 2005 and 2006. The particle dispersion model FLEXPART was used to calculate anthropogenic and biomass-burning CO tracer values at the station in an attempt to identify the regions responsible for the high CO and O3 observations during spring and biomass-burning impacts in summer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Habitat selection has been one of the main research topics in ecology for decades. Nevertheless, many aspects of habitat selection still need to be explored. In particular, previous studies have overlooked the importance of temporal variation in habitat selection and the value of including data on reproductive success in order to describe the best quality habitat for a species. We used data collected from radiocollared wolves in Yellowstone National Park (USA), between 1996 and 2008, to describe wolf habitat selection. In particular, we aimed to identify i) seasonal differences in wolf habitat selection, ii) factors influencing interannual variation in habitat selection, and iii) the effect of habitat selection on wolf reproductive success. We used probability density functions to describe wolf habitat use and habitat coverages to represent the habitat available to wolves. We used regression analysis to connect habitat use with habitat characteristics and habitat selection with reproductive success. Our most relevant result was discovering strong interannual variability in wolf habitat selection. This variability was in part explained by pack identity and differences in litter size and leadership of a pack between two years (summer) and in pack size and precipitation (winter). We also detected some seasonal differences. Wolves selected open habitats, intermediate elevations, intermediate distances from roads, and avoided steep slopes in late winter. They selected areas close to roads and avoided steep slopes in summer. In early winter, wolves selected wetlands, herbaceous and shrub vegetation types, and areas at intermediate elevation and distance from roads. Surprisingly, the habitat characteristics selected by wolves were not useful in predicting reproductive success. We hypothesize that interannual variability in wolf habitat selection may be too strong to detect effects on reproductive success. Moreover, prey availability and competitor pressure may also have an influence on wolf reproductive success, which we did not assess. This project demonstrated how important temporal variation is in shaping patterns of habitat selection. We still believe in the value of running long-term studies, but the effect of temporal variation should always be taken into account.