4 resultados para SCHEDULING OF GRID TASKS
em Digital Commons - Michigan Tech
Resumo:
Geospatial information systems are used to analyze spatial data to provide decision makers with relevant, up-to-date, information. The processing time required for this information is a critical component to response time. Despite advances in algorithms and processing power, we still have many “human-in-the-loop” factors. Given the limited number of geospatial professionals, analysts using their time effectively is very important. The automation and faster humancomputer interactions of common tasks that will not disrupt their workflow or attention is something that is very desirable. The following research describes a novel approach to increase productivity with a wireless, wearable, electroencephalograph (EEG) headset within the geospatial workflow.
Resumo:
The dissertation titled "Driver Safety in Far-side and Far-oblique Crashes" presents a novel approach to assessing vehicle cockpit safety by integrating Human Factors and Applied Mechanics. The methodology of this approach is aimed at improving safety in compact mobile workspaces such as patrol vehicle cockpits. A statistical analysis performed using Michigan state's traffic crash data to assess various contributing factors that affect the risk of severe driver injuries showed that the risk was greater for unrestrained drivers (OR=3.38, p<0.0001) and for incidents involving front and far-side crashes without seatbelts (OR=8.0 and 23.0 respectively, p<0.005). Statistics also showed that near-side and far-side crashes pose similar threat to driver injury severity. A Human Factor survey was conducted to assess various Human-Machine/Human-Computer Interaction aspects in patrol vehicle cockpits. Results showed that tasks requiring manual operation, especially the usage of laptop, would require more attention and potentially cause more distraction. A vehicle survey conducted to evaluate ergonomics-related issues revealed that some of the equipment was in airbag deployment zones. In addition, experiments were conducted to assess the effects on driver distraction caused by changing the position of in-car accessories. A driving simulator study was conducted to mimic HMI/HCI in a patrol vehicle cockpit (20 subjects, average driving experience = 5.35 years, s.d. = 1.8). It was found that the mounting locations of manual tasks did not result in a significant change in response times. Visual displays resulted in response times less than 1.5sec. It can also be concluded that the manual task was equally distracting regardless of mounting positions (average response time was 15 secs). Average speeds and lane deviations did not show any significant results. Data from 13 full-scale sled tests conducted to simulate far-side impacts at 70 PDOF and 40 PDOF was used to analyze head injuries and HIC/AIS values. It was found that accelerations generated by the vehicle deceleration alone were high enough to cause AIS 3 - AIS 6 injuries. Pretensioners could mitigated injuries only in 40 PDOF (oblique) impacts but are useless in 70 PDOF impacts. Seat belts were ineffective in protecting the driver's head from injuries. Head would come in contact with the laptop during a far-oblique (40 PDOF) crash and far-side door for an angle-type crash (70 PDOF). Finite Element analysis head-laptop impact interaction showed that the contact velocity was the most crucial factor in causing a severe (and potentially fatal) head injury. Results indicate that no equipment may be mounted in driver trajectory envelopes. A very narrow band of space is left in patrol vehicles for installation of manual-task equipment to be both safe and ergonomic. In case of a contact, the material stiffness and damping properties play a very significant role in determining the injury outcome. Future work may be done on improving the interiors' material properties to better absorb and dissipate kinetic energy of the head. The design of seat belts and pretensioners may also be seen as an essential aspect to be further improved.
Resumo:
In this report, we survey results on distance magic graphs and some closely related graphs. A distance magic labeling of a graph G with magic constant k is a bijection l from the vertex set to {1, 2, . . . , n}, such that for every vertex x Σ l(y) = k,y∈NG(x) where NG(x) is the set of vertices of G adjacent to x. If the graph G has a distance magic labeling we say that G is a distance magic graph. In Chapter 1, we explore the background of distance magic graphs by introducing examples of magic squares, magic graphs, and distance magic graphs. In Chapter 2, we begin by examining some basic results on distance magic graphs. We next look at results on different graph structures including regular graphs, multipartite graphs, graph products, join graphs, and splitting graphs. We conclude with other perspectives on distance magic graphs including embedding theorems, the matrix representation of distance magic graphs, lifted magic rectangles, and distance magic constants. In Chapter 3, we study graph labelings that retain the same labels as distance magic labelings, but alter the definition in some other way. These labelings include balanced distance magic labelings, closed distance magic labelings, D-distance magic labelings, and distance antimagic labelings. In Chapter 4, we examine results on neighborhood magic labelings, group distance magic labelings, and group distance antimagic labelings. These graph labelings change the label set, but are otherwise similar to distance magic graphs. In Chapter 5, we examine some applications of distance magic and distance antimagic labeling to the fair scheduling of tournaments. In Chapter 6, we conclude with some open problems.
Resumo:
Tracking or target localization is used in a wide range of important tasks from knowing when your flight will arrive to ensuring your mail is received on time. Tracking provides the location of resources enabling solutions to complex logistical problems. Wireless Sensor Networks (WSN) create new opportunities when applied to tracking, such as more flexible deployment and real-time information. When radar is used as the sensing element in a tracking WSN better results can be obtained; because radar has a comparatively larger range both in distance and angle to other sensors commonly used in WSNs. This allows for less nodes deployed covering larger areas, saving money. In this report I implement a tracking WSN platform similar to what was developed by Lim, Wang, and Terzis. This consists of several sensor nodes each with a radar, a sink node connected to a host PC, and a Matlab© program to fuse sensor data. I have re-implemented their experiment with my WSN platform for tracking a non-cooperative target to verify their results and also run simulations to compare. The results of these tests are discussed and some future improvements are proposed.