8 resultados para Rutting

em Digital Commons - Michigan Tech


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Assessment of soil disturbance on the Custer National Forest was conducted during two summers to determine if the U.S. Forest Service Forest Soil Disturbance Monitoring Protocol (FSDMP) was able to distinguish post-harvest soil conditions in a chronological sequence of sites harvested using different ground-based logging systems. Results from the first year of sampling suggested that the FSDMP point sampling method may not be sensitive enough to measure post-harvest disturbance in stands with low levels of disturbance. Therefore, a revised random transect method was used during the second sampling season to determine the actual extent of soil disturbance in these cutting units. Using combined data collected from both summers I detected statistically significant differences (p < 0.05) in fine fraction bulk density measurements between FSDMP disturbance classes across all sites. Disturbance class 3 (most severe) had the highest reported bulk density, which suggest that the FSDMP visual class estimates are defined adequately allowing for correlations to be made between visual disturbance and actual soil physical characteristics. Forest site productivity can be defined by its ability to retain carbon and convert it to above- and belowground biomass. However, forest management activities that alter basic site characteristics have the potential to alter productivity. Soil compaction is one critical management impact that is important to understand; compaction has been shown to impede the root growth potential of plants, reduce water infiltration rates increasing erosion potential, and alter plant available water and nutrients, depending on soil texture. A new method to assess ground cover, erosion, and other soil disturbances was recently published by the U.S. Forest Service, as the Forest Soil Disturbance Protocol (FSDMP). The FSDMP allows soil scientists to visually assign a disturbance class estimate (0 – none, 1, 2, 3 – severe) from field measures of consistently defined soil disturbance indicators (erosion, fire, rutting, compaction, and platy/massive/puddled structure) in small circular (15 cm) plots to compare soil quality properties pre- and post- harvest condition. Using this protocol we were able to determine that ground-based timber harvesting activities occurring on the Custer National Forest are not reaching the 15% maximum threshold for detrimental soil disturbance outlined by the Region 1 Soil Quality Standards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study describes the development and establishment of a proposed Simple Performance Test (SPT) specification in order to contribute to the asphalt materials technology in the state of Michigan. The properties and characteristic of materials, performance testing of specimens, and field analyses are used in developing draft SPT specifications. These advanced and more effective specifications should significantly improve the qualities of designed and constructed hot mix asphalt (HMA) leading to improvement in pavement life in Michigan. The objectives of this study include the following: 1) using the SPT, conduct a laboratory study to measure the parameters including the dynamic modulus terms (E*/sinϕ and E*) and the flow number (Fn) for typical Michigan HMA mixtures, 2) correlate the results of the laboratory study to field performance as they relate to flexible pavement performance (rutting, fatigue, and low temperature cracking), and 3) make recommendations for the SPT criteria at specific traffic levels (e.g. E3, E10, E30), including recommendations for a draft test specification for use in Michigan. The specification criteria of dynamic modulus were developed based upon field rutting performance and contractor warranty criteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditionally, asphalt mixtures were produced at high temperatures (between 150°C to 180°C) and therefore often referred to as Hot Mix Asphalt (HMA). Recently, a new technology named Warm Mix Asphalt (WMA) was developed in Europe that allows HMA to be produced at a lower temperature. Over years of research efforts, a few WMA technologies were introduced including the foaming method using Aspha-min® and Advera® WMA; organic additives such as Sasobit® and Asphaltan B®; and chemical packages such as Evotherm® and Cecabase RT®. Benefits were found when lower temperatures were used to produce asphalt mixtures, especially when it comes to environmental and energy savings. Even though WMA has shown promising results in energy savings and emission reduction, however, only limited studies and laboratory tests have been conducted to date. The objectives of this project are to 1) develop a mix design framework for WMA by evaluating its mechanical properties; 2) evaluate performance of WMA containing high percentages of recycled asphalt material; and 3) evaluate the moisture sensitivity in WMA. The test results show that most of the WMA has higher fatigue life and TSR which indicated WMA has better fatigue cracking and moisture damage resistant; however, the rutting potential of most of the WMA tested were higher than the control HMA. A recommended WMA mix design framework was developed as well. The WMA design framework was presented in this study to provide contractors, and government agencies successfully design WMA. Mixtures containing high RAP and RAS were studied as well and the overall results show that WMA technology allows the mixture containing high RAP content and RAS to be produced at lower temperature (up to 35°C lower) without significantly affect the performance of asphalt mixture in terms of rutting, fatigue and moisture susceptibility. Lastly, the study also found that by introducing the hydrated lime in the WMA, all mixtures modified by the hydrated lime passed the minimum requirement of 0.80. This indicated that, the moisture susceptibility of the WMA can be improved by adding the hydrated lime.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research is to develop sustainable wood-blend bioasphalt and characterize the atomic, molecular and bulk-scale behavior necessary to produce advanced asphalt paving mixtures. Bioasphalt was manufactured from Aspen, Basswood, Red Maple, Balsam, Maple, Pine, Beech and Magnolia wood via a 25 KWt fast-pyrolysis plant at 500 °C and refined into two distinct end forms - non-treated (5.54% moisture) and treated bioasphalt (1% moisture). Michigan petroleum-based asphalt, Performance Grade (PG) 58-28 was modified with 2, 5 and 10% of the bioasphalt by weight of base asphalt and characterized with the gas chromatography-mass spectroscopy (GC-MS), Fourier Transform Infra-red (FTIR) spectroscopy and the automated flocculation titrimetry techniques. The GC-MS method was used to characterize the Carbon-Hydrogen-Nitrogen (CHN) elemental ratio whiles the FTIR and the AFT were used to characterize the oxidative aging performance and the solubility parameters, respectively. For rheological characterization, the rotational viscosity, dynamic shear modulus and flexural bending methods are used in evaluating the low, intermediate and high temperature performance of the bio-modified asphalt materials. 54 5E3 (maximum of 3 million expected equivalent standard axle traffic loads) asphalt paving mixes were then prepared and characterized to investigate their laboratory permanent deformation, dynamic mix stiffness, moisture susceptibility, workability and constructability performance. From the research investigations, it was concluded that: 1) levo, 2, 6 dimethoxyphenol, 2 methoxy 4 vinylphenol, 2 methyl 1-2 cyclopentandione and 4-allyl-2, 6 dimetoxyphenol are the dominant chemical functional groups; 2) bioasphalt increases the viscosity and dynamic shear modulus of traditional asphalt binders; 3) Bio-modified petroleum asphalt can provide low-temperature cracking resistance benefits at -18 °C but is susceptible to cracking at -24 °C; 3) Carbonyl and sulphoxide oxidation in petroleum-based asphalt increases with increasing bioasphalt modifiers; 4) bioasphalt causes the asphaltene fractions in petroleum-based asphalt to precipitate out of the solvent maltene fractions; 5) there is no definite improvement or decline in the dynamic mix behavior of bio-modified mixes at low temperatures; 6) bio-modified asphalt mixes exhibit better rutting performance than traditional asphalt mixes; 7) bio-modified asphalt mixes have lower susceptibility to moisture damage; 8) more field compaction energy is needed to compact bio-modified mixes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complexity and challenge created by asphalt material motivates researchers and engineers to investigate the behavior of this material to develop a better understanding, and improve the performance of asphalt pavement. Over decades, a wide range of modification at macro, meso, micro and nano scales have been conducted to improve the performance of asphalt pavement. This study was initiated to utilize the newly developed asphalt modifier pellets. These pellets consisted of different combinations of calcium carbonate (CaCO3), linear low-density polyethylene (LLDPE) and titanate coupling agent (CA) to improve the asphalt binder as well as pavement performance across a wide range of temperature and loading pace. These materials were used due to their unique characteristics and promising findings from various industries, especially as modifiers in pavement material. The challenge is to make sure the CaCO3 disperses very well in the mixture. The rheological properties of neat asphalt binder PG58-28 and modified asphalt binder (PG58-28/LLDPE, PG58-28/CaCO3, PG58-28/CaCO3/LLDPE, and PG58-28/CaCO3/LLDPE/CA), were determined using rotational viscometer (RV) test, dynamic shear rheometer (DSR) test and bending beam rheometer test. In the DSR test, the specimens were evaluated using frequency sweep and multiple shear creep recovery (MSCR). The asphalt mixtures (aggregate/PG58-28, aggregate/ PG58-28/LLDPE, aggregate/PG58-28/CaCO3, aggregate/PG58-28/LLDPE/CaCO3 and aggregate/PG58-28/LLDPE/CaCO3/CA) were evaluated using the four point beam fatigue test, the dynamic modulus (E*) test, and tensile strength test (to determines tensile strength ratio, TSR). The RV test results show that all modified asphalt binders have a higher viscosity compared to the neat asphalt binder (PG58-28). Based on the Jnr results (using MSCR test), all the modified asphalt binders have a better resistance to rutting compared to the neat asphalt binder. A higher modifier contents have resulted in a better recovery percentage of asphalt binder (higher resistance to rutting), except the specimens prepared using PECC’s modified asphalt binder (PG58-28/CaCO3/LLDPE). The BBR test results show that all the modified asphalt binders have shown comparable performance in term of resistance to low temperature cracking, except the specimen prepared using the LLDPE modifier. Overall, 5 wt% LLDPE modified asphalt binder was found to be the best asphalt binder in terms of resistance to rutting. Meanwhile, 3 wt% PECC-1CA’s modified asphalt binder can be considered as the best (in terms of resistance to thermal cracking) with the lowest mean critical cracking temperature. The appearance of CaCO3 was found useful merely in improving the resistance to fatigue cracking of asphalt mixture. However, application of LLDPE has undermined the fatigue life of asphalt mixtures. Adding LLDPE and coupling agent throughout this study does not sufficiently help in terms of elastic behavior which essential to enhance the resistance to fatigue cracking. In contrast, application of LLDPE has increased the indirect tensile strength values and TSR of asphalt mixtures, indicates a better resistance to moisture damage. The usage of the coupling agent does not change the behavior of the asphalt mixture, which could be due to imbalance effects resulted by combination of LLDPE and CaCO3 in asphalt binder. Further investigations without incorporating CaCO3 should be conducted further. To investigate the feasibility of using LLDPE and coupling agent as modifiers in asphalt pavements, more research should be conducted on different percentages of LLDPE (less than 3 wt%), and at the higher and w wider range of coupling agent content, from 3 wt% to 7 wt% based on the polymer mass.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A shortage of petroleum asphalt is creating opportunities for engineers to utilize alternative pavement materials. Three types of bio oils, original bio oil (OB), dewatered bio oil (DWB) and polymer-modified bio oil (PMB) were used to modify and partially replace petroleum asphalt in this research. The research investigated the procedure of producing bio oil, the rheological properties of asphalt binders modified and partially replaced by bio oil, and the mechanical performances of asphalt mixtures modified by bio oil. The analysis of variance (ANOVA) is conducted on the test results for the significance analysis. The main finding of the study includes: 1) the virgin bioasphalt is softer than the traditional asphalt binder PG 58-28 but stiffer after RTFO aging because bio oil ages much faster than the traditional asphalt binder during mixing and compaction; 2) the binder test showed that the addition of bio oil is expected to improve the rutting performance while reduce the fatigue and low temperature performance; 3) both the mass loss and the oxidation are important reasons for the bio oil aging during RTFO test; the mixture test showed that 1) most of the bio oil modified asphalt mixture had slightly higher rutting depth than the control asphalt mixture, but the difference is not statistically significant; 2) the dynamic modulus of some of the bio oil modified asphalt mixture were slightly lower than the control asphalt mixture, the E* modulus is also not statistically significant; 3) most of the bio oil modified asphalt mixture had higher fatigue lives than the control asphalt mixture; 4) the inconsistence of binder test results and mixture test results may be attributed to that the aging during the mixing and compaction was not as high as that in the RTFO aging simulation. 5) the implementation of Michigan wood bioasphalt is anticipated to reduce the emission but bring irritation on eyes and skins during the mixing and compaction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bulk electric waste plastics were recycled and reduced in size into plastic chips before pulverization or cryogenic grinding into powders. Two major types of electronic waste plastics were used in this investigation: acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS). This research investigation utilized two approaches for incorporating electronic waste plastics into asphalt pavement materials. The first approach was blending and integrating recycled and processed electronic waste powders directly into asphalt mixtures and binders; and the second approach was to chemically treat recycled and processed electronic waste powders with hydro-peroxide before blending into asphalt mixtures and binders. The chemical treatment of electronic waste (e-waste) powders was intended to strengthen molecular bonding between e-waste plastics and asphalt binders for improved low and high temperature performance. Superpave asphalt binder and mixture testing techniques were conducted to determine the rheological and mechanical performance of the e-waste modified asphalt binders and mixtures. This investigation included a limited emissions-performance assessment to compare electronic waste modified asphalt pavement mixture emissions using SimaPro and performance using MEPDG software. Carbon dioxide emissions for e-waste modified pavement mixtures were compared with conventional asphalt pavement mixtures using SimaPro. MEPDG analysis was used to determine rutting potential between the various e-waste modified pavement mixtures and the control asphalt mixture. The results from this investigation showed the following: treating the electronic waste plastics delayed the onset of tertiary flow for electronic waste mixtures, electronic waste mixtures showed some improvement in dynamic modulus results at low temperatures versus the control mixture, and tensile strength ratio values for treated e-waste asphalt mixtures were improved versus the control mixture.