4 resultados para Risk assessment Mathematical models
em Digital Commons - Michigan Tech
Resumo:
Invasive exotic plants have altered natural ecosystems across much of North America. In the Midwest, the presence of invasive plants is increasing rapidly, causing changes in ecosystem patterns and processes. Early detection has become a key component in invasive plant management and in the detection of ecosystem change. Risk assessment through predictive modeling has been a useful resource for monitoring and assisting with treatment decisions for invasive plants. Predictive models were developed to assist with early detection of ten target invasive plants in the Great Lakes Network of the National Park Service and for garlic mustard throughout the Upper Peninsula of Michigan. These multi-criteria risk models utilize geographic information system (GIS) data to predict the areas at highest risk for three phases of invasion: introduction, establishment, and spread. An accuracy assessment of the models for the ten target plants in the Great Lakes Network showed an average overall accuracy of 86.3%. The model developed for garlic mustard in the Upper Peninsula resulted in an accuracy of 99.0%. Used as one of many resources, the risk maps created from the model outputs will assist with the detection of ecosystem change, the monitoring of plant invasions, and the management of invasive plants through prioritized control efforts.
Resumo:
Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).
Resumo:
Current procedures for flood risk estimation assume flood distributions are stationary over time, meaning annual maximum flood (AMF) series are not affected by climatic variation, land use/land cover (LULC) change, or management practices. Thus, changes in LULC and climate are generally not accounted for in policy and design related to flood risk/control, and historical flood events are deemed representative of future flood risk. These assumptions need to be re-evaluated, however, as climate change and anthropogenic activities have been observed to have large impacts on flood risk in many areas. In particular, understanding the effects of LULC change is essential to the study and understanding of global environmental change and the consequent hydrologic responses. The research presented herein provides possible causation for observed nonstationarity in AMF series with respect to changes in LULC, as well as a means to assess the degree to which future LULC change will impact flood risk. Four watersheds in the Midwest, Northeastern, and Central United States were studied to determine flood risk associated with historical and future projected LULC change. Historical single framed aerial images dating back to the mid-1950s were used along with Geographic Information Systems (GIS) and remote sensing models (SPRING and ERDAS) to create historical land use maps. The Forecasting Scenarios of Future Land Use Change (FORE-SCE) model was applied to generate future LULC maps annually from 2006 to 2100 for the conterminous U.S. based on the four IPCC-SRES future emission scenario conditions. These land use maps were input into previously calibrated Soil and Water Assessment Tool (SWAT) models for two case study watersheds. In order to isolate effects of LULC change, the only variable parameter was the Runoff Curve Number associated with the land use layer. All simulations were run with daily climate data from 1978-1999, consistent with the 'base' model which employed the 1992 NLCD to represent 'current' conditions. Output daily maximum flows were converted to instantaneous AMF series and were subsequently modeled using a Log-Pearson Type 3 (LP3) distribution to evaluate flood risk. Analysis of the progression of LULC change over the historic period and associated SWAT outputs revealed that AMF magnitudes tend to increase over time in response to increasing degrees of urbanization. This is consistent with positive trends in the AMF series identified in previous studies, although there are difficulties identifying correlations between LULC change and identified change points due to large time gaps in the generated historical LULC maps, mainly caused by unavailability of sufficient quality historic aerial imagery. Similarly, increases in the mean and median AMF magnitude were observed in response to future LULC change projections, with the tails of the distributions remaining reasonably constant. FORE-SCE scenario A2 was found to have the most dramatic impact on AMF series, consistent with more extreme projections of population growth, demands for growing energy sources, agricultural land, and urban expansion, while AMF outputs based on scenario B2 showed little changes for the future as the focus is on environmental conservation and regional solutions to environmental issues.
Resumo:
Over 2 million Anterior Cruciate Ligament (ACL) injuries occur annually worldwide resulting in considerable economic and health burdens (e.g., suffering, surgery, loss of function, risk for re-injury, and osteoarthritis). Current screening methods are effective but they generally rely on expensive and time-consuming biomechanical movement analysis, and thus are impractical solutions. In this dissertation, I report on a series of studies that begins to investigate one potentially efficient alternative to biomechanical screening, namely skilled observational risk assessment (e.g., having experts estimate risk based on observations of athletes movements). Specifically, in Study 1 I discovered that ACL injury risk can be accurately and reliably estimated with nearly instantaneous visual inspection when observed by skilled and knowledgeable professionals. Modern psychometric optimization techniques were then used to develop a robust and efficient 5-item test of ACL injury risk prediction skill—i.e., the ACL Injury-Risk-Estimation Quiz or ACL-IQ. Study 2 cross-validated the results from Study 1 in a larger representative sample of both skilled (Exercise Science/Sports Medicine) and un-skilled (General Population) groups. In accord with research on human expertise, quantitative structural and process modeling of risk estimation indicated that superior performance was largely mediated by specific strategies and skills (e.g., ignoring irrelevant information), independent of domain general cognitive abilities (e.g., metal rotation, general decision skill). These cognitive models suggest that ACL-IQ is a trainable skill, providing a foundation for future research and applications in training, decision support, and ultimately clinical screening investigations. Overall, I present the first evidence that observational ACL injury risk prediction is possible including a robust technology for fast, accurate and reliable measurement—i.e., the ACL-IQ. Discussion focuses on applications and outreach including a web platform that was developed to house the test, provide a repository for further data collection, and increase public and professional awareness and outreach (www.ACL-IQ.org). Future directions and general applications of the skilled movement analysis approach are also discussed.