2 resultados para Review Model
em Digital Commons - Michigan Tech
Resumo:
For a fluid dynamics experimental flow measurement technique, particle image velocimetry (PIV) provides significant advantages over other measurement techniques in its field. In contrast to temperature and pressure based probe measurements or other laser diagnostic techniques including laser Doppler velocimetry (LDV) and phase Doppler particle analysis (PDPA), PIV is unique due to its whole field measurement capability, non-intrusive nature, and ability to collect a vast amount of experimental data in a short time frame providing both quantitative and qualitative insight. These properties make PIV a desirable measurement technique for studies encompassing a broad range of fluid dynamics applications. However, as an optical measurement technique, PIV also requires a substantial technical understanding and application experience to acquire consistent, reliable results. Both a technical understanding of particle image velocimetry and practical application experience are gained by applying a planar PIV system at Michigan Technological University’s Combustion Science Exploration Laboratory (CSEL) and Alternative Fuels Combustion Laboratory (AFCL). Here a PIV system was applied to non-reacting and reacting gaseous environments to make two component planar PIV as well as three component stereographic PIV flow field velocity measurements in conjunction with chemiluminescence imaging in the case of reacting flows. This thesis outlines near surface flow field characteristics in a tumble strip lined channel, three component velocity profiles of non-reacting and reacting swirled flow in a swirl stabilized lean condition premixed/prevaporized-fuel model gas turbine combustor operating on methane at 5-7 kW, and two component planar PIV measurements characterizing the AFCL’s 1.1 liter closed combustion chamber under dual fan driven turbulent mixing flow.
Resumo:
Purpose – The focus of this research is to find out a meaningful relationship between adopting sustainability practices and some of the characteristics of institutions of higher education (IHE). IHE can be considered as the best place to promote sustainability and develop the culture of sustainability in society. Thus, this research is conducted to help developing sustainability in IHE which have significant direct and indirect impact on society and the environment. Design/methodology/approach – First, the sustainability letter grades were derived from “Greenreportcard.org” which have been produced based on an evaluation of each school in nine main categories including: Administration, Climate Change & Energy, Food & Recycling, etc. In the next step, the characteristics of IHE as explanatory variables were chosen from “The Integrated Postsecondary Education Data System” (IPEDS) and respective database was implemented in STATA Software. Finally, the “ordered-Probit Model” is used through STATA to analyze the impact of some IHE’s factor on adopting sustainability practices on campus. Finding - The results of this analysis indicate that variables related to “Financial support” category are the most influential factors in determining the sustainability status of the university. “The university features” with two significant variables for “Selectivity” and “Top 50 LA” can be classified as the second influential category in this table, although the “Student influence” is also eligible to be ranked as the second important factor. Finally, the “Location feature” of university was determined with the least influential impact on the sustainability of campuses. Originality/value – Understanding the factors which influence adopting sustainability practices in IHE is an important issue to develop more effective sustainability’s methods and policies.