6 resultados para Resource-Based Theories
em Digital Commons - Michigan Tech
Resumo:
Job seekers in resource-based economic settings like the Keweenaw Peninsula in Upper Michigan and the Nickel Basin surrounding Sudbury, Ontario faced many challenges, from the dangers of the job to corporate domination to the “boom and bust” nature of inevitably limited supplies of even “endless” natural riches. Adding to these many challenges in both settings was the employer view that you were best suited to certain tasks. This paper examines these expectations from “both” ends – how and why did employers see matters this way, and what did the “recipients” make of being cast in certain roles ? Did the newcomers also expect to earn their keep from a limited range of options ? While the last word on this issue awaits a much larger study, even a glance can inform both the scholar of resource settings and the ethnic historian about an important element of resource-based economies. This paper, then, examines the links between stereotype, preference, and necessity – to what extent did local populations fight, appreciate or succumb to expectation when “making a living.” As the title suggests, Finns get significant attention, as befits both settings under study. However, the paper looks to similar trends amongst a broad demographic swathe in each setting. Was “who” you were the crucial element in finding sustenance ? “Ethnic”, Aboriginal, or “established settler society” – what factors shaped economic expectations, choices and roles?
Resumo:
Bioenergy and biobased products offer new opportunities for strengthening rural economies, enhancing environmental health, and providing a secure energy future. Realizing these benefits will require the development of many different biobased products and biobased production systems. The biomass feedstocks that will enable such development must be sustainable, widely available across many different regions, and compatible with industry requirements. The purpose of this research is to develop an economic model that will help decision makers identify the optimal size of a forest resource based biofuel production facility. The model must be applicable to decision makers anywhere, though the modeled case analysis will focus on a specific region; the Upper Peninsula (U.P.) of Michigan. This work will illustrate that several factors influence the optimal facility size. Further, this effort will reveal that the location of the facility does affect size. The results of the research show that an optimal facility size can be determined for a given location and are based on variables including forest biomass availability, transportation cost rate, and economy of scale factors. These variables acting alone and interacting together can influence the optimal size and the decision of where to locate the biofuel production facility. Further, adjustments to model variables like biomass resource and storage costs have no effect on facility size, but do affect the unit cost of the biofuel produced.
Resumo:
Virtualization has become a common abstraction layer in modern data centers. By multiplexing hardware resources into multiple virtual machines (VMs) and thus enabling several operating systems to run on the same physical platform simultaneously, it can effectively reduce power consumption and building size or improve security by isolating VMs. In a virtualized system, memory resource management plays a critical role in achieving high resource utilization and performance. Insufficient memory allocation to a VM will degrade its performance dramatically. On the contrary, over-allocation causes waste of memory resources. Meanwhile, a VM’s memory demand may vary significantly. As a result, effective memory resource management calls for a dynamic memory balancer, which, ideally, can adjust memory allocation in a timely manner for each VM based on their current memory demand and thus achieve the best memory utilization and the optimal overall performance. In order to estimate the memory demand of each VM and to arbitrate possible memory resource contention, a widely proposed approach is to construct an LRU-based miss ratio curve (MRC), which provides not only the current working set size (WSS) but also the correlation between performance and the target memory allocation size. Unfortunately, the cost of constructing an MRC is nontrivial. In this dissertation, we first present a low overhead LRU-based memory demand tracking scheme, which includes three orthogonal optimizations: AVL-based LRU organization, dynamic hot set sizing and intermittent memory tracking. Our evaluation results show that, for the whole SPEC CPU 2006 benchmark suite, after applying the three optimizing techniques, the mean overhead of MRC construction is lowered from 173% to only 2%. Based on current WSS, we then predict its trend in the near future and take different strategies for different prediction results. When there is a sufficient amount of physical memory on the host, it locally balances its memory resource for the VMs. Once the local memory resource is insufficient and the memory pressure is predicted to sustain for a sufficiently long time, a relatively expensive solution, VM live migration, is used to move one or more VMs from the hot host to other host(s). Finally, for transient memory pressure, a remote cache is used to alleviate the temporary performance penalty. Our experimental results show that this design achieves 49% center-wide speedup.
Resumo:
Dynamic spectrum access (DSA) aims at utilizing spectral opportunities both in time and frequency domains at any given location, which arise due to variations in spectrum usage. Recently, Cognitive radios (CRs) have been proposed as a means of implementing DSA. In this work we focus on the aspect of resource management in overlaid CRNs. We formulate resource allocation strategies for cognitive radio networks (CRNs) as mathematical optimization problems. Specifically, we focus on two key problems in resource management: Sum Rate Maximization and Maximization of Number of Admitted Users. Since both the above mentioned problems are NP hard due to presence of binary assignment variables, we propose novel graph based algorithms to optimally solve these problems. Further, we analyze the impact of location awareness on network performance of CRNs by considering three cases: Full location Aware, Partial location Aware and Non location Aware. Our results clearly show that location awareness has significant impact on performance of overlaid CRNs and leads to increase in spectrum utilization effciency.
Resumo:
During the project, managers encounter numerous contingencies and are faced with the challenging task of making decisions that will effectively keep the project on track. This task is very challenging because construction projects are non-prototypical and the processes are irreversible. Therefore, it is critical to apply a methodological approach to develop a few alternative management decision strategies during the planning phase, which can be deployed to manage alternative scenarios resulting from expected and unexpected disruptions in the as-planned schedule. Such a methodology should have the following features but are missing in the existing research: (1) looking at the effects of local decisions on the global project outcomes, (2) studying how a schedule responds to decisions and disruptive events because the risk in a schedule is a function of the decisions made, (3) establishing a method to assess and improve the management decision strategies, and (4) developing project specific decision strategies because each construction project is unique and the lessons from a particular project cannot be easily applied to projects that have different contexts. The objective of this dissertation is to develop a schedule-based simulation framework to design, assess, and improve sequences of decisions for the execution stage. The contribution of this research is the introduction of applying decision strategies to manage a project and the establishment of iterative methodology to continuously assess and improve decision strategies and schedules. The project managers or schedulers can implement the methodology to develop and identify schedules accompanied by suitable decision strategies to manage a project at the planning stage. The developed methodology also lays the foundation for an algorithm towards continuously automatically generating satisfactory schedule and strategies through the construction life of a project. Different from studying isolated daily decisions, the proposed framework introduces the notion of {em decision strategies} to manage construction process. A decision strategy is a sequence of interdependent decisions determined by resource allocation policies such as labor, material, equipment, and space policies. The schedule-based simulation framework consists of two parts, experiment design and result assessment. The core of the experiment design is the establishment of an iterative method to test and improve decision strategies and schedules, which is based on the introduction of decision strategies and the development of a schedule-based simulation testbed. The simulation testbed used is Interactive Construction Decision Making Aid (ICDMA). ICDMA has an emulator to duplicate the construction process that has been previously developed and a random event generator that allows the decision-maker to respond to disruptions in the emulation. It is used to study how the schedule responds to these disruptions and the corresponding decisions made over the duration of the project while accounting for cascading impacts and dependencies between activities. The dissertation is organized into two parts. The first part presents the existing research, identifies the departure points of this work, and develops a schedule-based simulation framework to design, assess, and improve decision strategies. In the second part, the proposed schedule-based simulation framework is applied to investigate specific research problems.
Resumo:
Water springs are the principal source of water for many localities in Central America, including the municipality of Concepción Chiquirichapa in the Western Highlands of Guatemala. Long-term monitoring records are critical for informed water management as well as resource forecasting, though data are scarce and monitoring in low-resource settings presents special challenges. Spring discharge was monitored monthly in six municipal springs during the author’s Peace Corps assignment, from May 2011 to March 2012, and water level height was monitored in two spring boxes over the same time period using automated water-level loggers. The intention of this approach was to circumvent the need for frequent and time-intensive manual measurement by identifying a fixed relationship between discharge and water level. No such relationship was identified, but the water level record reveals that spring yield increased for four months following Tropical Depression 12E in October 2011. This suggests that the relationship between extreme precipitation events and long-term water spring yields in Concepción should be examined further. These limited discharge data also indicate that aquifer baseflow recession and catchment water balance could be successfully characterized if a long-term discharge record were established. This study also presents technical and social considerations for selecting a methodology for spring discharge measurement and highlights the importance of local interest in conducting successful community-based research in intercultural low-resource settings.