4 resultados para Reinforced Concrete Structures

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ultra-high performance fiber reinforced concrete (UHPFRC) has arisen from the implementation of a variety of concrete engineering and materials science concepts developed over the last century. This material offers superior strength, serviceability, and durability over its conventional counterparts. One of the most important differences for UHPFRC over other concrete materials is its ability to resist fracture through the use of randomly dispersed discontinuous fibers and improvements to the fiber-matrix bond. Of particular interest is the materials ability to achieve higher loads after first crack, as well as its high fracture toughness. In this research, a study of the fracture behavior of UHPFRC with steel fibers was conducted to look at the effect of several parameters related to the fracture behavior and to develop a fracture model based on a non-linear curve fit of the data. To determine this, a series of three-point bending tests were performed on various single edge notched prisms (SENPs). Compression tests were also performed for quality assurance. Testing was conducted on specimens of different cross-sections, span/depth (S/D) ratios, curing regimes, ages, and fiber contents. By comparing the results from prisms of different sizes this study examines the weakening mechanism due to the size effect. Furthermore, by employing the concept of fracture energy it was possible to obtain a comparison of the fracture toughness and ductility. The model was determined based on a fit to P-w fracture curves, which was cross referenced for comparability to the results. Once obtained the model was then compared to the models proposed by the AFGC in the 2003 and to the ACI 544 model for conventional fiber reinforced concretes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The rehabilitation of concrete structures, especially concrete bridge decks, is a major challenge for transportation agencies in the United States. Often, the most appropriate strategy to preserve or rehabilitate these structures is to provide some form of a protective coating or barrier. These surface treatments have typically been some form of polymer, asphalt, or low-permeability concrete, but the application of UHPC has shown promise for this application mainly due to its negligible permeability, but also as a result of its excellent mechanical properties, self-consolidating nature, rapid gain strength, and minimal creep and shrinkage characteristics. However, for widespread acceptance, durability and performance of the composite system must be fully understood, specifically the bond between UHPC and NSC often used in bridge decks. It is essential that the bond offers enough strength to resist the stress due to mechanical loading or thermal effects, while also maintaining an extended service-life performance. This report attempts to assess the bond strength between UHPC and NSC under different loading configurations. Different variables, such as roughness degree of the concrete substrates, age of bond, exposure to freeze-thaw cycles and wetting conditions of the concrete substrate, were included in this study. The combination of splitting tensile test with 0, 300, 600 and 900 freeze-thaw cycles was carried out to assess the bond performance under severe ambient conditions. The slant-shear test was utilized with different interface angles to provide a wide understanding of the bond performance under different combinations of compression and shear stresses. The pull-off test is the most accepted method to evaluate the bond strength in the field. This test which studies the direct tensile strength of the bond, the most severe loading condition, was used to provide data that can be correlated with the other tests that only can be used in the laboratory. The experimental program showed that the bond performance between UHPC and NSC is successful, as the strength regardless the different degree of roughness of the concrete substrate, the age of the composite specimens, the exposure to freeze-thaw cycles and the different loading configurations, is greater than that of concrete substrate and largely satisfies with ACI 546.3R-06.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Civil infrastructure provides essential services for the development of both society and economy. It is very important to manage systems efficiently to ensure sound performance. However, there are challenges in information extraction from available data, which also necessitates the establishment of methodologies and frameworks to assist stakeholders in the decision making process. This research proposes methodologies to evaluate systems performance by maximizing the use of available information, in an effort to build and maintain sustainable systems. Under the guidance of problem formulation from a holistic view proposed by Mukherjee and Muga, this research specifically investigates problem solving methods that measure and analyze metrics to support decision making. Failures are inevitable in system management. A methodology is developed to describe arrival pattern of failures in order to assist engineers in failure rescues and budget prioritization especially when funding is limited. It reveals that blockage arrivals are not totally random. Smaller meaningful subsets show good random behavior. Additional overtime failure rate is analyzed by applying existing reliability models and non-parametric approaches. A scheme is further proposed to depict rates over the lifetime of a given facility system. Further analysis of sub-data sets is also performed with the discussion of context reduction. Infrastructure condition is another important indicator of systems performance. The challenges in predicting facility condition are the transition probability estimates and model sensitivity analysis. Methods are proposed to estimate transition probabilities by investigating long term behavior of the model and the relationship between transition rates and probabilities. To integrate heterogeneities, model sensitivity is performed for the application of non-homogeneous Markov chains model. Scenarios are investigated by assuming transition probabilities follow a Weibull regressed function and fall within an interval estimate. For each scenario, multiple cases are simulated using a Monte Carlo simulation. Results show that variations on the outputs are sensitive to the probability regression. While for the interval estimate, outputs have similar variations to the inputs. Life cycle cost analysis and life cycle assessment of a sewer system are performed comparing three different pipe types, which are reinforced concrete pipe (RCP) and non-reinforced concrete pipe (NRCP), and vitrified clay pipe (VCP). Life cycle cost analysis is performed for material extraction, construction and rehabilitation phases. In the rehabilitation phase, Markov chains model is applied in the support of rehabilitation strategy. In the life cycle assessment, the Economic Input-Output Life Cycle Assessment (EIO-LCA) tools are used in estimating environmental emissions for all three phases. Emissions are then compared quantitatively among alternatives to support decision making.