6 resultados para Regulatory Traffic Control Devices.

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation discusses structural-electrostatic modeling techniques, genetic algorithm based optimization and control design for electrostatic micro devices. First, an alternative modeling technique, the interpolated force model, for electrostatic micro devices is discussed. The method provides improved computational efficiency relative to a benchmark model, as well as improved accuracy for irregular electrode configurations relative to a common approximate model, the parallel plate approximation model. For the configuration most similar to two parallel plates, expected to be the best case scenario for the approximate model, both the parallel plate approximation model and the interpolated force model maintained less than 2.2% error in static deflection compared to the benchmark model. For the configuration expected to be the worst case scenario for the parallel plate approximation model, the interpolated force model maintained less than 2.9% error in static deflection while the parallel plate approximation model is incapable of handling the configuration. Second, genetic algorithm based optimization is shown to improve the design of an electrostatic micro sensor. The design space is enlarged from published design spaces to include the configuration of both sensing and actuation electrodes, material distribution, actuation voltage and other geometric dimensions. For a small population, the design was improved by approximately a factor of 6 over 15 generations to a fitness value of 3.2 fF. For a larger population seeded with the best configurations of the previous optimization, the design was improved by another 7% in 5 generations to a fitness value of 3.0 fF. Third, a learning control algorithm is presented that reduces the closing time of a radiofrequency microelectromechanical systems switch by minimizing bounce while maintaining robustness to fabrication variability. Electrostatic actuation of the plate causes pull-in with high impact velocities, which are difficult to control due to parameter variations from part to part. A single degree-of-freedom model was utilized to design a learning control algorithm that shapes the actuation voltage based on the open/closed state of the switch. Experiments on 3 test switches show that after 5-10 iterations, the learning algorithm lands the switch with an impact velocity not exceeding 0.2 m/s, eliminating bounce.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One dimensional magnetic photonic crystals (1D-MPC) are promising structures for integrated optical isolator applications. Rare earth substituted garnet thin films with proper Faraday rotation are required to fabricate planar 1D-MPCs. In this thesis, flat-top response 1D-MPC was proposed and spectral responses and Faraday rotation were modeled. Bismuth substituted iron garnet films were fabricated by RF magnetron sputtering and structures, compositions, birefringence and magnetooptical properties were studied. Double layer structures for single mode propagation were also fabricated by sputtering for the first time. Multilayer stacks with multiple defects (phase shift) composed of Ce-YIG and GGG quarter-wave plates were simulated by the transfer matrix method. The transmission and Faraday rotation characteristics were theoretically studied. It is found that flat-top response, with 100% transmission and near 45o rotation is achievable by adjusting the inter-defect spacing, for film structures as thin as 30 to 35 μm. This is better than 3-fold reduction in length compared to the best Ce-YIG films for comparable rotations, thus allows a considerable reduction in size in manufactured optical isolators. Transmission bands as wide as 7nm were predicted, which is considerable improvement over 2 defects structure. Effect of repetition number and ratio factor on transmission and Faraday rotation ripple factors for the case of 3 and 4 defects structure has been discussed. Diffraction across the structure corresponds to a longer optical path length. Thus the use of guided optics is required to minimize the insertion losses in integrated devices. This part is discussed in chapter 2 in this thesis. Bismuth substituted iron garnet thin films were prepared by RF magnetron sputtering. We investigated or measured the deposition parameters optimization, crystallinity, surface morphologies, composition, magnetic and magnetooptical properties. A very high crystalline quality garnet film with smooth surface has been heteroepitaxially grown on (111) GGG substrate for films less than 1μm. Dual layer structures with two distinct XRD peaks (within a single sputtered film) start to develop when films exceed this thickness. The development of dual layer structure was explained by compositional gradient across film thickness, rather than strain gradient proposed by other authors. Lower DC self bias or higher substrate temperature is found to help to delay the appearance of the 2nd layer. The deposited films show in-plane magnetization, which is advantageous for waveguide devices application. Propagation losses of fabricated waveguides can be decreased by annealing in an oxygen atmosphere from 25dB/cm to 10dB/cm. The Faraday rotation at λ=1.55μm were also measured for the waveguides. FR is small (10° for a 3mm long waveguide), due to the presence of linear birefringence. This part is covered in chapter 4. We also investigated the elimination of linear birefringence by thickness tuning method for our sputtered films. We examined the compressively and tensilely strained films and analyze the photoelastic response of the sputter deposited garnet films. It has been found that the net birefringence can be eliminated under planar compressive strain conditions by sputtering. Bi-layer GGG on garnet thin film yields a reduced birefringence. Temperature control during the sputter deposition of GGG cover layer is critical and strongly influences the magnetization and birefringence level in the waveguide. High temperature deposition lowers the magnetization and increases the linear birefringence in the garnet films. Double layer single mode structures fabricated by sputtering were also studied. The double layer, which shows an in-plane magnetization, has an increased RMS roughness upon upper layer deposition. The single mode characteristic was confirmed by prism coupler measurement. This part is discussed in chapter 5.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This research evaluated an Intelligent Compaction (IC) unit on the M-189 highway reconstruction project at Iron River, Michigan. The results from the IC unit were compared to several traditional compaction measurement devices including Nuclear Density Gauge (NDG), Geogauge, Light Weight Deflectometer (LWD), Dynamic Cone Penetrometer (DCP), and Modified Clegg Hammer (MCH). The research collected point measurements data on a test section in which 30 test locations on the final Class II sand base layer and the 22A gravel layer. These point measurements were compared with the IC measurements (ICMVs) on a point-to-point basis through a linear regression analysis. Poor correlations were obtained among different measurements points using simple regression analysis. When comparing the ICMV to the compaction measurements points. Factors attributing to the weak correlation include soil heterogeneity, variation in IC roller operation parameters, in-place moisture content, the narrow range of the compaction devices measurement ranges and support conditions of the support layers. After incorporating some of the affecting factors into a multiple regression analysis, the strength of correlation significantly improved, especially on the stiffer gravel layer. Measurements were also studied from an overall distribution perspective in terms of average, measurement range, standard deviation, and coefficient of variance. Based on data analysis, on-site project observation and literature review, conclusions were made on how IC performed in regards to compaction control on the M-189 reconstruction project.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-active damping devices have been shown to be effective in mitigating unwanted vibrations in civil structures. These devices impart force indirectly through real-time alterations to structural properties. Simulating the complex behavior of these devices for laboratory-scale experiments is a major challenge. Commercial devices for seismic applications typically operate in the 2-10 kN range; this force is too high for small-scale testing applications where requirements typically range from 0-10 N. Several challenges must be overcome to produce damping forces at this level. In this study, a small-scale magneto-rheological (MR) damper utilizing a fluid absorbent metal foam matrix is developed and tested to accomplish this goal. This matrix allows magneto-rheological (MR) fluid to be extracted upon magnetic excitation in order to produce MR-fluid shear stresses and viscosity effects between an electromagnetic piston, the foam, and the damper housing. Dampers for uniaxial seismic excitation are traditionally positioned in the horizontal orientation allowing MR-fluid to gather in the lower part of the damper housing when partially filled. Thus, the absorbent matrix is placed in the bottom of the housing relieving the need to fill the entire device with MR-fluid, a practice that requires seals that add significant unwanted friction to the desired low-force device. The damper, once constructed, can be used in feedback control applications to reduce seismic vibrations and to test structural control algorithms and wireless command devices. To validate this device, a parametric study was performed utilizing force and acceleration measurements to characterize damper performance and controllability for this actuator. A discussion of the results is presented to demonstrate the attainment of the damper design objectives.