1 resultado para Real data
em Digital Commons - Michigan Tech
Filtro por publicador
- Abertay Research Collections - Abertay University’s repository (1)
- Academic Research Repository at Institute of Developing Economies (1)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (15)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (10)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (2)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Aston University Research Archive (32)
- Biblioteca de Teses e Dissertações da USP (5)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (32)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (80)
- Biblioteca Virtual del Sistema Sanitario Público de Andalucía (BV-SSPA), Junta de Andalucía. Consejería de Salud y Bienestar Social, Spain (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (21)
- Brock University, Canada (2)
- Bucknell University Digital Commons - Pensilvania - USA (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (10)
- CentAUR: Central Archive University of Reading - UK (63)
- CiencIPCA - Instituto Politécnico do Cávado e do Ave, Portugal (5)
- Cochin University of Science & Technology (CUSAT), India (7)
- Collection Of Biostatistics Research Archive (1)
- Consorci de Serveis Universitaris de Catalunya (CSUC), Spain (70)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (5)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (2)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (9)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (21)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (4)
- Düsseldorfer Dokumenten- und Publikationsservice (1)
- FUNDAJ - Fundação Joaquim Nabuco (2)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (3)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (65)
- Iowa Publications Online (IPO) - State Library, State of Iowa (Iowa), United States (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Nottingham eTheses (13)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- Publishing Network for Geoscientific & Environmental Data (2)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (1)
- Repositório Aberto da Universidade Aberta de Portugal (1)
- Repositorio Academico Digital UANL (1)
- Repositório Científico da Universidade de Évora - Portugal (2)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (31)
- Repositório da Escola Nacional de Administração Pública (ENAP) (1)
- Repositório da Produção Científica e Intelectual da Unicamp (7)
- Repositório da Universidade Federal do Espírito Santo (UFES), Brazil (2)
- Repositorio de la Universidad de Cuenca (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (10)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (4)
- Repositório Institucional da Universidade de Brasília (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional da Universidade Federal do Rio Grande do Norte (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (87)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (18)
- Scielo Saúde Pública - SP (11)
- Scottish Institute for Research in Economics (SIRE) (SIRE), United Kingdom (6)
- Universidad de Alicante (6)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (40)
- Universidade Complutense de Madrid (3)
- Universidade do Minho (26)
- Universidade dos Açores - Portugal (2)
- Universidade Federal do Pará (22)
- Universidade Federal do Rio Grande do Norte (UFRN) (28)
- Universidade Técnica de Lisboa (1)
- Universitat de Girona, Spain (25)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (67)
- Université de Montréal (2)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (1)
- University of Michigan (4)
- University of Queensland eSpace - Australia (17)
- University of Southampton, United Kingdom (1)
Resumo:
This report discusses the calculation of analytic second-order bias techniques for the maximum likelihood estimates (for short, MLEs) of the unknown parameters of the distribution in quality and reliability analysis. It is well-known that the MLEs are widely used to estimate the unknown parameters of the probability distributions due to their various desirable properties; for example, the MLEs are asymptotically unbiased, consistent, and asymptotically normal. However, many of these properties depend on an extremely large sample sizes. Those properties, such as unbiasedness, may not be valid for small or even moderate sample sizes, which are more practical in real data applications. Therefore, some bias-corrected techniques for the MLEs are desired in practice, especially when the sample size is small. Two commonly used popular techniques to reduce the bias of the MLEs, are ‘preventive’ and ‘corrective’ approaches. They both can reduce the bias of the MLEs to order O(n−2), whereas the ‘preventive’ approach does not have an explicit closed form expression. Consequently, we mainly focus on the ‘corrective’ approach in this report. To illustrate the importance of the bias-correction in practice, we apply the bias-corrected method to two popular lifetime distributions: the inverse Lindley distribution and the weighted Lindley distribution. Numerical studies based on the two distributions show that the considered bias-corrected technique is highly recommended over other commonly used estimators without bias-correction. Therefore, special attention should be paid when we estimate the unknown parameters of the probability distributions under the scenario in which the sample size is small or moderate.