2 resultados para Reactive Distillation

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polycarbonate (PC) is an important engineering thermoplastic that is currently produced in large industrial scale using bisphenol A and monomers such as phosgene. Since phosgene is highly toxic, a non-phosgene approach using diphenyl carbonate (DPC) as an alternative monomer, as developed by Asahi Corporation of Japan, is a significantly more environmentally friendly alternative. Other advantages include the use of CO2 instead of CO as raw material and the elimination of major waste water production. However, for the production of DPC to be economically viable, reactive-distillation units are needed to obtain the necessary yields by shifting the reaction-equilibrium to the desired products and separating the products at the point where the equilibrium reaction occurs. In the field of chemical reaction engineering, there are many reactions that are suffering from the low equilibrium constant. The main goal of this research is to determine the optimal process needed to shift the reactions by using appropriate control strategies of the reactive distillation system. An extensive dynamic mathematical model has been developed to help us investigate different control and processing strategies of the reactive distillation units to increase the production of DPC. The high-fidelity dynamic models include extensive thermodynamic and reaction-kinetics models while incorporating the necessary mass and energy balance of the various stages of the reactive distillation units. The study presented in this document shows the possibility of producing DPC via one reactive distillation instead of the conventional two-column, with a production rate of 16.75 tons/h corresponding to start reactants materials of 74.69 tons/h of Phenol and 35.75 tons/h of Dimethyl Carbonate. This represents a threefold increase over the projected production rate given in the literature based on a two-column configuration. In addition, the purity of the DPC produced could reach levels as high as 99.5% with the effective use of controls. These studies are based on simulation done using high-fidelity dynamic models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attempts to strengthen a chromium-modified titanium trialuminide by a combination of grain size refinement and dispersoid strengthening led to a new means to synthesize such materials. This Reactive Mechanical Alloying/Milling process uses in situ reactions between the metallic powders and elements from a process control agent and/or a gaseous environment to assemble a dispersed small hard particle phase within the matrix by a bottom-up approach. In the current research milled powders of the trialuminide alloy along with titanium carbide were produced. The amount of the carbide can be varied widely with simple processing changes and in this case the milling process created trialuminide grain sizes and carbide particles that are the smallest known from such a process. Characterization of these materials required the development of x-ray diffraction means to determine particle sizes by deconvoluting and synthesizing components of the complex multiphase diffraction patterns and to carry out whole pattern analysis to analyze the diffuse scattering that developed from larger than usual highly defective grain boundary regions. These identified regions provide an important mass transport capability in the processing and not only facilitate the alloy development, but add to the understanding of the mechanical alloying process. Consolidation of the milled powder that consisted of small crystallites of the alloy and dispersed carbide particles two nanometers in size formed a unique, somewhat coarsened, microstructure producing an ultra-high strength solid material composed of the chromium-modified titanium trialuminide alloy matrix with small platelets of the complex carbides Ti2AlC and Ti3AlC2. This synthesis process provides the unique ability to nano-engineer a wide variety of composite materials, or special alloys, and has shown the ability to be extended to a wide variety of metallic materials.