8 resultados para Rainwater absorption and retention

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the use of real-world contexts during instruction in a high school physics class - through building file folder bridges- and the resulting effect upon student interest in the subject matter, level of understanding, and degree of retention. In particular, the study focused upon whether increases in student interest were attained through the use of real-world contexts, and if the elevated interest level led to a higher degree of subject matter understanding than would be achieved using more traditional teaching methods. The study also determined whether using real-world contexts ultimately resulted in achievement of greater levels of knowledge retention by students. Class observations during traditionally taught units and during units that incorporated real-world contexts, along with a post-graduation questionnaire, were used to assess differences in student interest levels. Student pre- and post-unit test scores were evaluated and compared to determine if statistical differences existed in levels of understanding resulting from the different teaching methods. The post-graduation questionnaire results provided evidence of retention that could be related back to teaching methods. The results of this study revealed the importance of incorporating real-world contexts into science and mathematics courses. Students better understood the relevance of the lessons, which led to higher levels of interest and greater understanding than was achieved through more traditional teaching methods. The use of real-world contexts improved knowledge retention.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renewable energy is growing in demand, and thus the the manufacture of solar cells and photovoltaic arrays has advanced dramatically in recent years. This is proved by the fact that the photovoltaic production has doubled every 2 years, increasing by an average of 48% each year since 2002. Covering the general overview of solar cell working, and its model, this thesis will start with the three generations of photovoltaic solar cell technology, and move to the motivation of dedicating research to nanostructured solar cell. For the current generation solar cells, among several factors, like photon capture, photon reflection, carrier generation by photons, carrier transport and collection, the efficiency also depends on the absorption of photons. The absorption coefficient,α, and its dependence on the wavelength, λ, is of major concern to improve the efficiency. Nano-silicon structures (quantum wells and quantum dots) have a unique advantage compared to bulk and thin film crystalline silicon that multiple direct and indirect band gaps can be realized by appropriate size control of the quantum wells. This enables multiple wavelength photons of the solar spectrum to be absorbed efficiently. There is limited research on the calculation of absorption coefficient in nano structures of silicon. We present a theoretical approach to calculate the absorption coefficient using quantum mechanical calculations on the interaction of photons with the electrons of the valence band. One model is that the oscillator strength of the direct optical transitions is enhanced by the quantumconfinement effect in Si nanocrystallites. These kinds of quantum wells can be realized in practice in porous silicon. The absorption coefficient shows a peak of 64638.2 cm-1 at = 343 nm at photon energy of ξ = 3.49 eV ( = 355.532 nm). I have shown that a large value of absorption coefficient α comparable to that of bulk silicon is possible in silicon QDs because of carrier confinement. Our results have shown that we can enhance the absorption coefficient by an order of 10, and at the same time a nearly constant absorption coefficient curve over the visible spectrum. The validity of plots is verified by the correlation with experimental photoluminescence plots. A very generic comparison for the efficiency of p-i-n junction solar cell is given for a cell incorporating QDs and sans QDs. The design and fabrication technique is discussed in brief. I have shown that by using QDs in the intrinsic region of a cell, we can improve the efficiency by a factor of 1.865 times. Thus for a solar cell of efficiency of 26% for first generation solar cell, we can improve the efficiency to nearly 48.5% on using QDs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rainwater harvesting (RWH) has a long history and has been supported as an appropriate technology and relatively cheap source of domestic water supply. This study compares the suitability of RWH and piped water systems in three rural Dominican communities seeking to improve their water systems. Ethnographic methods considering the views of residents and feasibility and cost analysis of the options were used to conclude that RWH is not a feasible or cost-effective solution for domestic water needs of all households in the communities studied. RWH investment is best left to individual households that can implement informal RWH with incremental increases in storage volume. Piped water distribution (PWD) systems perceived as too large or expensive to implement have much lower capital costs and are more supported by residents as a solution because they provide large quantities of water needed to maintain water services beyond mere survival levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Traditional methods of measuring sound absorption coefficient and sound transmission loss of a material are time consuming. To overcome this limitation, normal incidence sound absorption and transmission loss measurement technique was developed. Unfortunately the equipment required for this task is equally expensive. Hence efforts are taken to develop a cost-effective equipment for measuring normal incidence sound absorption coefficient and transmission loss. An impedance tube capable of measure absorption coefficient and transmission loss is designed and built under a budget of $1500 for educational institutes. A background study is performed to gain knowledge and understanding of the normal incidence measurements technique. Based on the literature review, parameters involved such as tube material, source and microphone properties, sample holders, etc. are discussed in depth. Based on these parameters, design options are generated to meet the cost and functionality targets pre-assigned. After selection of materials and components, an impedance tube is built and tested using three fibrous absorption materials for absorption and a barrier for transmission loss performance. These measured results then compared with those obtained with the help of industry recognized Brüel & Kjær impedance tube. The results show performances are comparable, hence validation the new built tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

“Addressing water problems will help improve sanitation.” This relationship identified by a primary school teacher in Rakai District, Uganda, was a key component in understanding how water and sanitation technologies interact and how identified successes, challenges, and improvements would enhance schools’ water and sanitation condition. In this study, researchers and Ugandan counterparts visited 49 primary schools in Rakai District to assess the existing water and sanitation infrastructure of government and private schools. Researchers were specifically interested in learning which technologies were being used and why they were working or not. Through the development of a unique water and sanitation assessment tool, schools have been placed in to four relationship quadrants to rate existing water and latrine use standards. Recommendations including improved rainwater use and sanitation through composting have been offered to schools sampled.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What motivates students to perform and pursue engineering design tasks? This study examines this question by way of three Learning Through Service (LTS) programs: 1) an on-going longitudinal study examining the impacts of service on engineering students, 2) an on-going analysis of an international senior design capstone program, and 3) an on-going evaluation of an international graduate-level research program. The evaluation of these programs incorporates both qualitative and quantitative methods, utilizing surveys, questionnaires, and interviews, which help to provide insight on what motivates students to do engineering design work. The quantitative methods were utilized in analyzing various instruments including: a Readiness assessment inventory, Intercultural Development Inventory, Sustainable Engineering through Service Learning survey, the Impacts of Service on Engineering Students’ survey, Motivational narratives, as well as some analysis for interview text. The results of these instruments help to provide some much needed insight on how prepared students are to participate in engineering programs. Additional qualitative methods include: Word clouds, Motivational narratives, as well as interview analysis. This thesis focused on how these instruments help to determine what motivates engineering students to pursue engineering design tasks. These instruments aim to collect some more in-depth information than the quantitative instruments will allow. Preliminary results suggest that of the 120 interviews analyzed Interest/Enjoyment, Application of knowledge and skills, as well as gaining knowledge are key motivating factors regardless of gender or academic level. Together these findings begin to shed light on what motivates students to perform engineering design tasks, which can be applied for better recruitment and retention in university programs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BODIPY (4,4-Difluoro-3a,4a-diaza-s-indacene) dyes have gained lots of attention in application of fluorescence sensing and imaging in recent years because they possess many distinctive and desirable properties such as high extinction coefficient, narrow absorption and emission bands, high quantum yield and low photobleaching effect. However, most of BODIPY-based fluorescent probes have very poor solubilities in aqueous solution, emit less than 650 nm fluorescence that can cause cell and tissue photodamages compared with bio-desirable near infrared (650-900 nm) light. These undesirable properties extremely limit the applications of BODIPY-based fluorescent probes in sensing and imaging applications. In order to overcome these drawbacks, we have developed a very effective strategy to prepare a series of neutral highly water- soluble BODIPY dyes by enhancing the water solubilities of BODIPY dyes via incorporation of tri(ethylene glycol)methyl ether (TEG) and branched oligo(ethylene glycol)methyl ether (BEG) residues onto BODIPY dyes at 1,7-, 2,6-, 3,5-, 4- and meso- positions. We also have effectively tuned absorptions and emissions of BOIDPY dyes to red, deep red and near infrared regions via significant extension of π-conjugation of BODIPY dyes by condensation reactions of aromatic aldehydes with 2,6-diformyl BODIPY dyes at 1,3,5,7-positions. Based on the foundation that we built for enhancing water solubility and tuning wavelength, we have designed and developed a series of water-soluble, BODIPY-based fluorescent probes for sensitive and selective sensing and imaging of cyanide, Zn (II) ions, lysosomal pH and cancer cells. We have developed three BODIPY-based fluorescent probes for sensing of cyanide ions by incorporating indolium moieties onto the 6-position of TEG- or BEG-modified BOIDPY dyes. Two of them are highly water-soluble. These fluorescent probes showed selective and fast ratiometric fluorescent responses to cyanide ions with a dramatic fluorescence color change from red to green accompanying a significant increase in fluorescent intensity. The detection limit was measured as 0.5 mM of cyanide ions. We also have prepared three highly water-soluble fluorescent probes for sensing of Zn (II) ions by introducing dipicoylamine (DPA, Zn ion chelator) onto 2- and/or 6-positions of BEG-modified BODIPY dyes. These probes showed selective and sensitive responses to Zn (II) ion in the range from 0.5 mM to 24 mM in aqueous solution at pH 7.0. Particularly, one of the probes displayed ratiometric responses to Zn (II) ions with fluorescence quenching at 661 nm and fluorescence enhancement at 521 nm. This probe has been successfully applied to the detection of intracellular Zn (II) ions inside the living cells. Then, we have further developed three acidotropic, near infrared emissive BODIPY- based fluorescent probes for detection of lysosomal pH by incorporating piperazine moiety at 3,5-positions of TEG- or BEG-modified BODIPY dyes as parts of conjugation. The probes have low auto-fluorescence at physiological neutral condition while their fluorescence intensities will significant increase at 715 nm when pH shift to acidic condition. These three probes have been successfully applied to the in vitro imaging of lysosomes inside two types of living cells. At the end, we have synthesized one water- soluble, near infrared emissive cancer cell targetable BODIPY-based fluorescent polymer bearing cancer homing peptide (cRGD) residues for cancer cell imaging applications. This polymer exhibited excellent water-solubility, near infrared emission (712 nm), good biocompatibility. It also showed low nonspecific interactions to normal endothelial cells and can effectively detect breast tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.