5 resultados para Railroad travel.
em Digital Commons - Michigan Tech
Resumo:
In an increasingly interconnected world characterized by the accelerating interplay of cultural, linguistic, and national difference, the ability to negotiate that difference in an equitable and ethical manner is a crucial skill for both individuals and larger social groups. This dissertation, Writing Center Handbooks and Travel Guidebooks: Redesigning Instructional Texts for Multicultural, Multilingual, and Multinational Contexts, considers how instructional texts that ostensibly support the negotiation of difference (i.e., accepting and learning from difference) actually promote the management of difference (i.e., rejecting, assimilating, and erasing difference). As a corrective to this focus on managing difference, chapter two constructs a theoretical framework that facilitates the redesign of handbooks, guidebooks, and similar instructional texts. This framework centers on reflexive design practices and is informed by literacy theory (Gee; New London Group; Street), social learning theory (Wenger), globalization theory (Nederveen Pieterse), and composition theory (Canagarajah; Horner and Trimbur; Lu; Matsuda; Pratt). By implementing reflexive design practices in the redesign of instructional texts, this dissertation argues that instructional texts can promote the negotiation of difference and a multicultural/multilingual sensibility that accounts for twenty-first century linguistic and cultural realities. Informed by the theoretical framework of chapter two, chapters three and four conduct a rhetorical analysis of two forms of instructional text that are representative of the larger genre: writing center coach handbooks and travel guidebooks to Hong Kong. This rhetorical analysis reveals how both forms of text employ rhetorical strategies that uphold dominant monolingual and monocultural assumptions. Alternative rhetorical strategies are then proposed that can be used to redesign these two forms of instructional texts in a manner that aligns with multicultural and multilingual assumptions. These chapters draw on the work of scholars in Writing Center Studies (Boquet and Lerner; Carino; DiPardo; Grimm; North; Severino) and Technical Communication (Barton and Barton; Dilger; Johnson; Kimball; Slack), respectively. Chapter five explores how the redesign of coach handbooks and travel guidebooks proposed in this dissertation can be conceptualized as a political act. Ultimately, this dissertation argues that instructional texts are powerful heuristic tools that can enact social change if they are redesigned to foster the negotiation of difference and to promote multicultural/multilingual world views.
Resumo:
Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.
Resumo:
The Michigan Department of Transportation is evaluating upgrading their portion of the Wolverine Line between Chicago and Detroit to accommodate high speed rail. This will entail upgrading the track to allow trains to run at speeds in excess of 110 miles per hour (mph). An important component of this upgrade will be to assess the requirement for ballast material for high speed rail. In the event that the existing ballast materials do not meet specifications for higher speed train, additional ballast will be required. The purpose of this study, therefore, is to investigate the current MDOT railroad ballast quality specifications and compare them to both the national and international specifications for use on high speed rail lines. The study found that while MDOT has quality specifications for railroad ballast it does not have any for high speed rail. In addition, the American Railway Engineering and Maintenance-of-Way Association (AREMA), while also having specifications for railroad ballast, does not have specific specifications for high speed rail lines. The AREMA aggregate specifications for ballast include the following tests: (1) LA Abrasion, (2) Percent Moisture Absorption, (3) Flat and Elongated Particles, (4) Sulfate Soundness test. Internationally, some countries do require a highly standard for high speed rail such as the Los Angeles (LA) Abrasion test, which is uses a higher standard performance and the Micro Duval test, which is used to determine the maximum speed that a high speed can operate at. Since there are no existing MDOT ballast specification for high speed rail, it is assumed that aggregate ballast specifications for the Wolverine Line will use the higher international specifications. The Wolverine line, however, is located in southern Michigan is a region of sedimentary rocks which generally do not meet the existing MDOT ballast specifications. The investigation found that there were only 12 quarries in the Michigan that meet the MDOT specification. Of these 12 quarries, six were igneous or metamorphic rock quarries, while six were carbonate quarries. Of the six carbonate quarries four were locate in the Lower Peninsula and two in the Upper Peninsula. Two of the carbonate quarries were located in near proximity to the Wolverine Line, while the remaining quarries were at a significant haulage distance. In either case, the cost of haulage becomes an important consideration. In this regard, four of the quarries were located with lake terminals allowing water transportation to down state ports. The Upper Peninsula also has a significant amount of metal based mining in both igneous and metamorphic rock that generate significant amount of waste rock that could be used as a ballast material. The main drawback, however, is the distance to the Wolverine rail line. One potential source is the Cliffs Natural Resources that operates two large surface mines in the Marquette area with rail and water transportation to both Lake Superior and Lake Michigan. Both mines mine rock with a very high compressive strength far in excess of most ballast materials used in the United States and would make an excellent ballast materials. Discussions with Cliffs, however, indicated that due to environmental concerns that they would most likely not be interested in producing a ballast material. In the United States carbonate aggregates, while used for ballast, many times don't meet the ballast specifications in addition to the problem of particle degradation that can lead to fouling and cementation issues. Thus, many carbonate aggregate quarries in close proximity to railroads are not used. Since Michigan has a significant amount of carbonate quarries, the research also investigated using the dynamic properties of aggregate as a possible additional test for aggregate ballast quality. The dynamic strength of a material can be assessed using a split Hopkinson Pressure Bar (SHPB). The SHPB has been traditionally used to assess the dynamic properties of metal but over the past 20 years it is now being used to assess the dynamic properties of brittle materials such as ceramics and rock. In addition, the wear properties of metals have been related to their dynamic properties. Wear or breakdown of railroad ballast materials is one of the main problems with ballast material due to the dynamic loading generated by trains and which will be significantly higher for high speed rails. Previous research has indicated that the Port Inland quarry along Lake Michigan in the Southern Upper Peninsula has significant dynamic properties that might make it potentially useable as an aggregate for high speed rail. The dynamic strength testing conducted in this research indicate that the Port Inland limestone in fact has a dynamic strength close to igneous rocks and much higher than other carbonate rocks in the Great Lakes region. It is recommended that further research be conducted to investigate the Port Inland limestone as a high speed ballast material.
Resumo:
http://digitalcommons.mtu.edu/copper_range/1000/thumbnail.jpg
Resumo:
Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).