8 resultados para Railroad Abandonment.

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Today the use of concrete ties is on the rise in North America as they become an economically competitive alternative to the historical industry standard wood ties, while providing performance which exceeds its competition in terms of durability and capacity. Similarly, in response to rising energy costs, there is increased demand for efficient and sustainable transportation of people and goods. One source of such transportation is the railroad. To accommodate the increased demand, railroads are constructing new track and upgrading existing track. This update to the track system will increase its capacity while making it a more reliable means of transportation compared to other alternatives. In addition to increasing the track system capacity, railroads are considering an increase in the size of the typical freight rail car to allow larger tonnage. An increase in rail car loads will in turn affect the performance requirements of the track. Due to the increased loads heavy haul railroads are considering applying to their tracks, current designs of prestressed concrete railroad ties for heavy haul applications may be undersized. In an effort to maximize tie capacity while maintaining tie geometry, fastening systems and installation equipment, a parametric study to optimize the existing designs was completed. The optimization focused on maximizing the capacity of an existing tie design through an investigation of prestressing quantity, configuration, stress levels and other material properties. The results of the parametric optimization indicate that the capacity of an existing tie can be increased most efficiently by increasing the diameter of the prestressing and concrete strength. However, researchers also found that current design specifications and procedures do not include consideration of tie behavior beyond the current tie capacity limit of cracking to the first layer of prestressing. In addition to limiting analysis to the cracking limit, failure mechanisms such as shear in deep beams at the rail seat or pullout failure of the prestressing due to lack of development length were absent from specified design procedures, but discussed in this project.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Michigan Department of Transportation is evaluating upgrading their portion of the Wolverine Line between Chicago and Detroit to accommodate high speed rail. This will entail upgrading the track to allow trains to run at speeds in excess of 110 miles per hour (mph). An important component of this upgrade will be to assess the requirement for ballast material for high speed rail. In the event that the existing ballast materials do not meet specifications for higher speed train, additional ballast will be required. The purpose of this study, therefore, is to investigate the current MDOT railroad ballast quality specifications and compare them to both the national and international specifications for use on high speed rail lines. The study found that while MDOT has quality specifications for railroad ballast it does not have any for high speed rail. In addition, the American Railway Engineering and Maintenance-of-Way Association (AREMA), while also having specifications for railroad ballast, does not have specific specifications for high speed rail lines. The AREMA aggregate specifications for ballast include the following tests: (1) LA Abrasion, (2) Percent Moisture Absorption, (3) Flat and Elongated Particles, (4) Sulfate Soundness test. Internationally, some countries do require a highly standard for high speed rail such as the Los Angeles (LA) Abrasion test, which is uses a higher standard performance and the Micro Duval test, which is used to determine the maximum speed that a high speed can operate at. Since there are no existing MDOT ballast specification for high speed rail, it is assumed that aggregate ballast specifications for the Wolverine Line will use the higher international specifications. The Wolverine line, however, is located in southern Michigan is a region of sedimentary rocks which generally do not meet the existing MDOT ballast specifications. The investigation found that there were only 12 quarries in the Michigan that meet the MDOT specification. Of these 12 quarries, six were igneous or metamorphic rock quarries, while six were carbonate quarries. Of the six carbonate quarries four were locate in the Lower Peninsula and two in the Upper Peninsula. Two of the carbonate quarries were located in near proximity to the Wolverine Line, while the remaining quarries were at a significant haulage distance. In either case, the cost of haulage becomes an important consideration. In this regard, four of the quarries were located with lake terminals allowing water transportation to down state ports. The Upper Peninsula also has a significant amount of metal based mining in both igneous and metamorphic rock that generate significant amount of waste rock that could be used as a ballast material. The main drawback, however, is the distance to the Wolverine rail line. One potential source is the Cliffs Natural Resources that operates two large surface mines in the Marquette area with rail and water transportation to both Lake Superior and Lake Michigan. Both mines mine rock with a very high compressive strength far in excess of most ballast materials used in the United States and would make an excellent ballast materials. Discussions with Cliffs, however, indicated that due to environmental concerns that they would most likely not be interested in producing a ballast material. In the United States carbonate aggregates, while used for ballast, many times don't meet the ballast specifications in addition to the problem of particle degradation that can lead to fouling and cementation issues. Thus, many carbonate aggregate quarries in close proximity to railroads are not used. Since Michigan has a significant amount of carbonate quarries, the research also investigated using the dynamic properties of aggregate as a possible additional test for aggregate ballast quality. The dynamic strength of a material can be assessed using a split Hopkinson Pressure Bar (SHPB). The SHPB has been traditionally used to assess the dynamic properties of metal but over the past 20 years it is now being used to assess the dynamic properties of brittle materials such as ceramics and rock. In addition, the wear properties of metals have been related to their dynamic properties. Wear or breakdown of railroad ballast materials is one of the main problems with ballast material due to the dynamic loading generated by trains and which will be significantly higher for high speed rails. Previous research has indicated that the Port Inland quarry along Lake Michigan in the Southern Upper Peninsula has significant dynamic properties that might make it potentially useable as an aggregate for high speed rail. The dynamic strength testing conducted in this research indicate that the Port Inland limestone in fact has a dynamic strength close to igneous rocks and much higher than other carbonate rocks in the Great Lakes region. It is recommended that further research be conducted to investigate the Port Inland limestone as a high speed ballast material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

http://digitalcommons.mtu.edu/copper_range/1000/thumbnail.jpg

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wireless sensor network is an emerging research topic due to its vast and ever-growing applications. Wireless sensor networks are made up of small nodes whose main goal is to monitor, compute and transmit data. The nodes are basically made up of low powered microcontrollers, wireless transceiver chips, sensors to monitor their environment and a power source. The applications of wireless sensor networks range from basic household applications, such as health monitoring, appliance control and security to military application, such as intruder detection. The wide spread application of wireless sensor networks has brought to light many research issues such as battery efficiency, unreliable routing protocols due to node failures, localization issues and security vulnerabilities. This report will describe the hardware development of a fault tolerant routing protocol for railroad pedestrian warning system. The protocol implemented is a peer to peer multi-hop TDMA based protocol for nodes arranged in a linear zigzag chain arrangement. The basic working of the protocol was derived from Wireless Architecture for Hard Real-Time Embedded Networks (WAHREN).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The “Quincy & Torch Lake Railroad Engine House Facility Management and Interpretive Plan" was designed to serve as a guide to aid the Quincy Mine Hoist Association in their efforts to restore and interpret historic railroad resources under their stewardship. Early searches for existing management and interpretive plans demonstrated that similar plans were primarily produced by the National Park Service and were intended to guide large scale heritage sites that consist of a variety of cultural resources. This project adapts concepts found in those large scale management and interpretive site plans, to guide small scale site management, restoration, and interpretive projects. The document presents a three stage, second phase restoration process. Each stage of development is guided by a series of management and interpretive goals and objectives which were set for the engine house facility.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A post classification change detection technique based on a hybrid classification approach (unsupervised and supervised) was applied to Landsat Thematic Mapper (TM), Landsat Enhanced Thematic Plus (ETM+), and ASTER images acquired in 1987, 2000 and 2004 respectively to map land use/cover changes in the Pic Macaya National Park in the southern region of Haiti. Each image was classified individually into six land use/cover classes: built-up, agriculture, herbaceous, open pine forest, mixed forest, and barren land using unsupervised ISODATA and maximum likelihood supervised classifiers with the aid of field collected ground truth data collected in the field. Ground truth information, collected in the field in December 2007, and including equalized stratified random points which were visual interpreted were used to assess the accuracy of the classification results. The overall accuracy of the land classification for each image was respectively: 1987 (82%), 2000 (82%), 2004 (87%). A post classification change detection technique was used to produce change images for 1987 to 2000, 1987 to 2004, and 2000 to 2004. It was found that significant changes in the land use/cover occurred over the 17- year period. The results showed increases in built up (from 10% to 17%) and herbaceous (from 5% to 14%) areas between 1987 and 2004. The increase of herbaceous was mostly caused by the abandonment of exhausted agriculture lands. At the same time, open pine forest and mixed forest areas lost (75%) and (83%) of their area to other land use/cover types. Open pine forest (from 20% to 14%) and mixed forest (from18 to 12%) were transformed into agriculture area or barren land. This study illustrated the continuing deforestation, land degradation and soil erosion in the region, which in turn is leading to decrease in vegetative cover. The study also showed the importance of Remote Sensing (RS) and Geographic Information System (GIS) technologies to estimate timely changes in the land use/cover, and to evaluate their causes in order to design an ecological based management plan for the park.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A range of societal issues have been caused by fossil fuel consumption in the transportation sector in the United States (U.S.), including health related air pollution, climate change, the dependence on imported oil, and other oil related national security concerns. Biofuels production from various lignocellulosic biomass types such as wood, forest residues, and agriculture residues have the potential to replace a substantial portion of the total fossil fuel consumption. This research focuses on locating biofuel facilities and designing the biofuel supply chain to minimize the overall cost. For this purpose an integrated methodology was proposed by combining the GIS technology with simulation and optimization modeling methods. The GIS based methodology was used as a precursor for selecting biofuel facility locations by employing a series of decision factors. The resulted candidate sites for biofuel production served as inputs for simulation and optimization modeling. As a precursor to simulation or optimization modeling, the GIS-based methodology was used to preselect potential biofuel facility locations for biofuel production from forest biomass. Candidate locations were selected based on a set of evaluation criteria, including: county boundaries, a railroad transportation network, a state/federal road transportation network, water body (rivers, lakes, etc.) dispersion, city and village dispersion, a population census, biomass production, and no co-location with co-fired power plants. The simulation and optimization models were built around key supply activities including biomass harvesting/forwarding, transportation and storage. The built onsite storage served for spring breakup period where road restrictions were in place and truck transportation on certain roads was limited. Both models were evaluated using multiple performance indicators, including cost (consisting of the delivered feedstock cost, and inventory holding cost), energy consumption, and GHG emissions. The impact of energy consumption and GHG emissions were expressed in monetary terms to keep consistent with cost. Compared with the optimization model, the simulation model represents a more dynamic look at a 20-year operation by considering the impacts associated with building inventory at the biorefinery to address the limited availability of biomass feedstock during the spring breakup period. The number of trucks required per day was estimated and the inventory level all year around was tracked. Through the exchange of information across different procedures (harvesting, transportation, and biomass feedstock processing procedures), a smooth flow of biomass from harvesting areas to a biofuel facility was implemented. The optimization model was developed to address issues related to locating multiple biofuel facilities simultaneously. The size of the potential biofuel facility is set up with an upper bound of 50 MGY and a lower bound of 30 MGY. The optimization model is a static, Mathematical Programming Language (MPL)-based application which allows for sensitivity analysis by changing inputs to evaluate different scenarios. It was found that annual biofuel demand and biomass availability impacts the optimal results of biofuel facility locations and sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New volumetric and mass flux estimates have been calculated for the Kenya Rift. Spatial and temporal histories for volcanic eruptions, lacustrine deposition, and hominin fossil sites are presented, aided by the compilation of a new digital geologic map. Distribution of volcanism over time indicates several periods of southward expansion followed by relative positional stasis. Volcanism occurs throughout the activated rift length, with no obvious abandonment as the rift system migrated. The main exception is a period of volcanic concentration around 10 Ma, when activity was constrained within 2° of the equator. Volumes derived from seismic data indicate a total volume of c. 310,000 km3 (2.47 x 1010 kg/yr ), which is significantly more than the map-derived volumes found here or published previously. Map-based estimates are likely affected by a bias against recognizing small volume events in the older record. Such events are, however, the main driver of erupted volume over the last 5 Ma. A technique developed here to counter this bias results in convergence of the two volume estimation techniques. Relative erupted composition over time is variable. Overall, the erupted material has a mafic to silicic ratio of 0.9:1. Basalts are distinctly more common in the Turkana region, which previously experienced Mesozoic rifting. Despite the near equal ratio of mafic to silicic products, the Kenya Rift otherwise fits the definition of a SLIP. It is proposed that the compositions would better fit the published definition if the Turkana region was not twice-rifted. Lacustrine sedimentation post-dates initial volcanism by about 5 million years, and follows the same volcanic trends, showing south and eastward migration over time. This sedimentation delay is likely related to timing of fault displacements. Evidence of hominin habitation is distinctly abundant in the northern and southern sections of the Kenya Rift, but there is an observed gap in the equatorial rift between 4 and 0.5 million years ago. After 0.5 Ma, sites appear to progress towards the equator. The pattern and timing of hominid site distributions suggests that the equatorial gap in habitation may be the result of active volcanic avoidance.