1 resultado para RSS feeds
em Digital Commons - Michigan Tech
Filtro por publicador
- JISC Information Environment Repository (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (6)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Aquatic Commons (93)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archive of European Integration (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (3)
- Aston University Research Archive (1)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (17)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (3)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (7)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (5)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (49)
- Central European University - Research Support Scheme (102)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (24)
- Cochin University of Science & Technology (CUSAT), India (10)
- CORA - Cork Open Research Archive - University College Cork - Ireland (6)
- CUNY Academic Works (3)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (1)
- DigitalCommons@The Texas Medical Center (1)
- DigitalCommons@University of Nebraska - Lincoln (3)
- DRUM (Digital Repository at the University of Maryland) (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (130)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (29)
- Instituto Politécnico do Porto, Portugal (3)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Ministerio de Cultura, Spain (11)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- Publishing Network for Geoscientific & Environmental Data (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (25)
- Queensland University of Technology - ePrints Archive (67)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (1)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (4)
- Repositório digital da Fundação Getúlio Vargas - FGV (5)
- Repositório do Centro Hospitalar de Lisboa Central, EPE - Centro Hospitalar de Lisboa Central, EPE, Portugal (1)
- Repositorio Institucional da UFLA (RIUFLA) (2)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (187)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (5)
- SAPIENTIA - Universidade do Algarve - Portugal (3)
- Universidad de Alicante (3)
- Universidad del Rosario, Colombia (13)
- Universidad Politécnica de Madrid (3)
- Universidade Federal do Pará (6)
- Universidade Federal do Rio Grande do Norte (UFRN) (11)
- Universitat de Girona, Spain (8)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (8)
- Université de Montréal (1)
- Université de Montréal, Canada (17)
- University of Michigan (17)
- University of Queensland eSpace - Australia (3)
- University of Southampton, United Kingdom (5)
- WestminsterResearch - UK (3)
Resumo:
The amount of information contained within the Internet has exploded in recent decades. As more and more news, blogs, and many other kinds of articles that are published on the Internet, categorization of articles and documents are increasingly desired. Among the approaches to categorize articles, labeling is one of the most common method; it provides a relatively intuitive and effective way to separate articles into different categories. However, manual labeling is limited by its efficiency, even thought the labels selected manually have relatively high quality. This report explores the topic modeling approach of Online Latent Dirichlet Allocation (Online-LDA). Additionally, a method to automatically label articles with their latent topics by combining the Online-LDA posterior with a probabilistic automatic labeling algorithm is implemented. The goal of this report is to examine the accuracy of the labels generated automatically by a topic model and probabilistic relevance algorithm for a set of real-world, dynamically updated articles from an online Rich Site Summary (RSS) service.