2 resultados para RPS

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Michigan depends heavily on fossil fuels to generate electricity. Compared with fossil fuels, electricity generation from renewable energy produces less pollutants emissions. A Renewable Portfolio Standard (RPS) is a mandate that requires electric utilities to generate a certain amount of electricity from renewable energy sources. This thesis applies the Cost-Benefits Analysis (CBA) method to investigate the impacts of implementing a 25% in Michigan by 2025. It is found that a 25% RPS will create about $20.12 billion in net benefits to the State. Moreover, if current tax credit policies will not change until 2025, its net present value will increase to about $26.59 billion. Based on the results of this CBA, a 25% RPS should be approved. The result of future studies on the same issue can be improved if more state specific data become available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing renewable portfolio standard (RPS). This leads to the need for a simple and accurate ethanol-gasoline blends combustion model that is applicable to one-dimensional engine simulation. A parametric combustion model has been developed, integrated into an engine simulation tool, and validated using SI engine experimental data. The parametric combustion model was built inside a user compound in GT-Power. In this model, selected burn durations were computed using correlations as functions of physically based non-dimensional groups that have been developed using the experimental engine database over a wide range of ethanol-gasoline blends, engine geometries, and operating conditions. A coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) correlation was also added to the parametric combustion model. This correlation enables the cycle combustion variation modeling as a function of engine geometry and operating conditions. The computed burn durations were then used to fit single and double Wiebe functions. The single-Wiebe parametric combustion compound used the least squares method to compute the single-Wiebe parameters, while the double-Wiebe parametric combustion compound used an analytical solution to compute the double-Wiebe parameters. These compounds were then integrated into the engine model in GT-Power through the multi-Wiebe combustion template in which the values of Wiebe parameters (single-Wiebe or double-Wiebe) were sensed via RLT-dependence. The parametric combustion models were validated by overlaying the simulated pressure trace from GT-Power on to experimentally measured pressure traces. A thermodynamic engine model was also developed to study the effect of fuel blends, engine geometries and operating conditions on both the burn durations and COV of gross IMEP simulation results.