9 resultados para ROUTINE STORAGE

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The rising concerns about environmental pollution and global warming have facilitated research interest in hydrogen energy as an alternative energy source. To apply hydrogen for transportations, several issues have to be solved, within which hydrogen storage is the most critical problem. Lots of materials and devices have been developed; however, none is able to meet the DOE storage target. The primary issue for hydrogen physisorption is a weak interaction between hydrogen and the surface of solid materials, resulting negligible adsorption at room temperature. To solve this issue, there is a need to increase the interaction between the hydrogen molecules and adsorbent surface. In this study, intrinsic electric dipole is investigated to enhance the adsorption energy. The results from the computer simulation of single ionic compounds with hydrogen molecules to form hydrogen clusters showed that electrical charge of substances plays an important role in generation of attractive interaction with hydrogen molecules. In order to further examine the effects of static interaction on hydrogen adsorption, activated carbon with a large surface area was impregnated with various ionic salts including LiCl, NaCl, KCl, KBr, and NiCl and their performance for hydrogen storage was evaluated by using a volumetric method. Corresponding computer simulations have been carried out by using DFT (Density Functional Theory) method combined with point charge arrays. Both experimental and computational results prove that the adsorption capacity of hydrogen and its interaction with the solid materials increased with electrical dipole moment. Besides the intrinsic dipole, an externally applied electric field could be another means to enhance hydrogen adsorption. Hydrogen adsorption under an applied electric field was examined by using porous nickel foil as electrodes. Electrical signals showed that adsorption capacity increased with the increasing of gas pressure and external electric voltage. Direct measurement of the amount of hydrogen adsorption was also carried out with porous nickel oxides and magnesium oxides using the piezoelectric material PMN-PT as the charge supplier due to the pressure. The adsorption enhancement from the PMN-PT generated charges is obvious at hydrogen pressure between 0 and 60 bars, where the hydrogen uptake is increased at about 35% for nickel oxide and 25% for magnesium oxide. Computer simulation reveals that under the external electric field, the electron cloud of hydrogen molecules is pulled over to the adsorbent site and can overlap with the adsorbent electrons, which in turn enhances the adsorption energy Experiments were also carried out to examine the effects of hydrogen spillover with charge induced enhancement. The results show that the overall storage capacity in nickel oxide increased remarkably by a factor of 4.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Understanding the canopy cover of an urban environment leads to better estimates of carbon storage and more informed management decisions by urban foresters. The most commonly used method for assessing urban forest cover type extent is ground surveys, which can be both timeconsuming and expensive. The analysis of aerial photos is an alternative method that is faster, cheaper, and can cover a larger number of sites, but may be less accurate. The objectives of this paper were (1) to compare three methods of cover type assessment for Los Angeles, CA: handdelineation of aerial photos in ArcMap, supervised classification of aerial photos in ERDAS Imagine, and ground-collected data using the Urban Forest Effects (UFORE) model protocol; (2) to determine how well remote sensing methods estimate carbon storage as predicted by the UFORE model; and (3) to explore the influence of tree diameter and tree density on carbon storage estimates. Four major cover types (bare ground, fine vegetation, coarse vegetation, and impervious surfaces) were determined from 348 plots (0.039 ha each) randomly stratified according to land-use. Hand-delineation was better than supervised classification at predicting ground-based measurements of cover type and UFORE model-predicted carbon storage. Most error in supervised classification resulted from shadow, which was interpreted as unknown cover type. Neither tree diameter or tree density per plot significantly affected the relationship between carbon storage and canopy cover. The efficiency of remote sensing rather than in situ data collection allows urban forest managers the ability to quickly assess a city and plan accordingly while also preserving their often-limited budget.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peru is a developing country with abundant fresh water resources, yet the lack of infrastructure leaves much of the population without access to safe water for domestic uses. The author of this report was a Peace Corps Volunteer in the sector of water & sanitation in the district of Independencia, Ica, Peru. Independencia is located in the arid coastal region of the country, receiving on average 15 mm of rain annually. The water source for this district comes from the Pisco River, originating in the Andean highlands and outflowing into the Pacific Ocean near the town of Pisco, Peru. The objectives of this report are to assess the water supply and sanitation practices, model the existing water distribution system, and make recommendations for future expansion of the distribution system in the district of Independencia, Peru. The assessment of water supply will be based on the results from community surveys done in the district of Independencia, water quality testing done by a detachment of the U.S. Navy, as well as on the results of a hydraulic model built in EPANET 2.0 to represent the distribution system. Sanitation practice assessments will be based on the surveys as well as observations from the author while living in Peru. Recommendations for system expansions will be made based on results from the EPANET model and the municipality’s technical report for the existing distribution system. Household water use and sanitation surveys were conducted with 84 families in the district revealing that upwards of 85% store their domestic water in regularly washed containers with lids. Over 80% of those surveyed are drinking water that is treated, mostly boiled. Of those surveyed, over 95% reported washing their hands and over 60% mentioned at least one critical time for hand washing when asked for specific instances. From the surveys, it was also discovered that over 80% of houses are properly disposing of excrement, in either latrines or septic tanks. There were 43 families interviewed with children five years of age or under, and just over 18% reported the child had a case of diarrhea within the last month at the time of the interview. Finally, from the surveys it was calculated that the average water use per person per day is about 22 liters. Water quality testing carried out by a detachment of the U.S. Navy revealed that the water intended for consumption in the houses surveyed was not suitable for consumption, with a median E. coli most probable number of 47/100 ml for the 61 houses sampled. The median total coliforms was 3,000 colony forming units per 100 ml. EPANET was used to simulate the water delivery system and evaluate its performance. EPANET is designed for continuous water delivery systems, assuming all pipes are always flowing full. To account for the intermittent nature of the system, multiple EPANET network models were created to simulate how water is routed to the different parts of the system throughout the day. The models were created from interviews with the water technicians and a map of the system created using handheld GPS units. The purpose is to analyze the performance of the water system that services approximately 13,276 people in the district of Independencia, Peru, as well as provide recommendations for future growth and improvement of the service level. Performance evaluation of the existing system is based on meeting 25 liters per person per day while maintaining positive pressure at all nodes in the network. The future performance is based on meeting a minimum pressure of 20 psi in the main line, as proposed by Chase (2000). The EPANET model results yield an average nodal pressure for all communities of 71 psi, with a range from 1.3 – 160 psi. Thus, if the current water delivery schedule obtained from the local municipality is followed, all communities should have sufficient pressure to deliver 25 l/p/d, with the exception of Los Rosales, which can only supply 3.25 l/p/d. However, if the line to Los Rosales were increased from one to four inches, the system could supply this community with 25 l/p/d. The district of Independencia could greatly benefit from increasing the service level to 24-hour water delivery and a minimum of 50 l/p/d, so that communities without reliable access due to insufficient pressure would become equal beneficiaries of this invaluable resource. To evaluate the feasibility of this, EPANET was used to model the system with a range of population growth rates, system lifetimes, and demands. In order to meet a minimum pressure of 20 psi in the main line, the 6-inch diameter main line must be increased and approximately two miles of trench must be excavated up to 30 feet deep. The sections of the main line that must be excavated are mile 0-1 and 1.5-2.5, and the first 3.4 miles of the main line must be increased from 6 to 16 inches, contracting to 10 inches for the remaining 5.8 miles. Doing this would allow 24-hour water delivery and provide 50 l/p/d for a range of population growth rates and system lifetimes. It is expected that improving the water delivery service would reduce the morbidity and mortality from diarrheal diseases by decreasing the recontamination of the water due to transport and household storage, as well as by maintaining continuous pressure in the system to prevent infiltration of contaminated groundwater. However, this expansion must be carefully planned so as not to affect aquatic ecosystems or other districts utilizing water from the Pisco River. It is recommended that stream gaging of the Pisco River and precipitation monitoring of the surrounding watershed is initiated in order to begin a hydrological study that would be integrated into the district’s water resource planning. It is also recommended that the district begin routine water quality testing, with the results available to the public.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Carbon dioxide (CO2) capture and storage experiments were conducted at ambient conditions in varying weight % sodium carbonate (Na2CO3) solutions. Experiments were conducted to determine the optimal amount of Na2CO3 in solution for CO2 absorption. It was concluded that a 2% Na2CO3 solution, by weight, was the most efficient solution. The 2% Na2CO3 solution is able to absorb 0.5 g CO2/g Na2CO3. These results led to studies to determine how the gas bubble size affected carbon dioxide absorption in the solution. Studies were conducted using ASTM porosity gas diffusers to vary the bubble size. Gas diffusers with porosities of fine, medium, and extra coarse were used. Results found that the medium porosity gas diffuser was the most efficient at absorbing CO2 at 50%. Variation in the bubble size concluded that absorption of carbon dioxide into the sodium carbonate solution does depend on the bubble size, thus is mass transfer limited. Once the capture stage was optimized (amount of Na2CO3 in solution and bubble size), the next step was to determine if carbon dioxide could be stored as a calcium carbonate mineral using calcium rich industrial waste and if the sodium carbonate solution could be simultaneously regenerated. Studies of CO2 sequestration at ambient conditions have shown that it is possible to permanently sequester CO2 in the form of calcium carbonate using a calcium rich industrial waste. Studies have also shown that it is possible to regenerate a fraction of the sodium carbonate solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Traditional transportation fuel, petroleum, is limited and nonrenewable, and it also causes pollutions. Hydrogen is considered one of the best alternative fuels for transportation. The key issue for using hydrogen as fuel for transportation is hydrogen storage. Lithium nitride (Li3N) is an important material which can be used for hydrogen storage. The decompositions of lithium amide (LiNH2) and lithium imide (Li2NH) are important steps for hydrogen storage in Li3N. The effect of anions (e.g. Cl-) on the decomposition of LiNH2 has never been studied. Li3N can react with LiBr to form lithium nitride bromide Li13N4Br which has been proposed as solid electrolyte for batteries. The decompositions of LiNH2 and Li2NH with and without promoter were investigated by using temperature programmed decomposition (TPD) and X-ray diffraction (XRD) techniques. It was found that the decomposition of LiNH2 produced Li2NH and NH3 via two steps: LiNH2 into a stable intermediate species (Li1.5NH1.5) and then into Li2NH. The decomposition of Li2NH produced Li, N2 and H2 via two steps: Li2NH into an intermediate species --- Li4NH and then into Li. The kinetic analysis of Li2NH decomposition showed that the activation energies are 533.6 kJ/mol for the first step and 754.2 kJ/mol for the second step. Furthermore, XRD demonstrated that the Li4NH, which was generated in the decomposition of Li2NH, formed a solid solution with Li2NH. In the solid solution, Li4NH possesses a similar cubic structure as Li2NH. The lattice parameter of the cubic Li4NH is 0.5033nm. The decompositions of LiNH2 and Li2NH can be promoted by chloride ion (Cl-). The introduction of Cl- into LiNH2 resulted in the generation of a new NH3 peak at low temperature of 250 °C besides the original NH3 peak at 330 °C in TPD profiles. Furthermore, Cl- can decrease the decomposition temperature of Li2NH by about 110 °C. The degradation of Li3N was systematically investigated with techniques of XRD, Fourier transform infrared (FT-IR) spectroscopy, and UV-visible spectroscopy. It was found that O2 could not affect Li3N at room temperature. However, H2O in air can cause the degradation of Li3N due to the reaction between H2O and Li3N to LiOH. The produced LiOH can further react with CO2 in air to Li2CO3 at room temperature. Furthermore, it was revealed that Alfa-Li3N is more stable in air than Beta-Li3N. The chemical stability of Li13N4Br in air has been investigated by XRD, TPD-MS, and UV-vis absorption as a function of time. The aging process finally leads to the degradation of the Li13N4Br into Li2CO3, lithium bromite (LiBrO2) and the release of gaseous NH3. The reaction order n = 2.43 is the best fitting for the Li13N4Br degradation in air reaction. Li13N4Br energy gap was calculated to be 2.61 eV.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The novel approach to carbon capture and storage (CCS) described in this dissertation is a significant departure from the conventional approach to CCS. The novel approach uses a sodium carbonate solution to first capture CO2 from post combustion flue gas streams. The captured CO2 is then reacted with an alkaline industrial waste material, at ambient conditions, to regenerate the carbonate solution and permanently store the CO2 in the form of an added value carbonate mineral. Conventional CCS makes use of a hazardous amine solution for CO2 capture, a costly thermal regeneration stage, and the underground storage of supercritical CO2. The objective of the present dissertation was to examine each individual stage (capture and storage) of the proposed approach to CCS. Study of the capture stage found that a 2% w/w sodium carbonate solution was optimal for CO2 absorption in the present system. The 2% solution yielded the best tradeoff between the CO2 absorption rate and the CO2 absorption capacity of the solutions tested. Examination of CO2 absorption in the presence of flue gas impurities (NOx and SOx) found that carbonate solutions possess a significant advantage over amine solutions, that they could be used for multi-pollutant capture. All the NOx and SOx fed to the carbonate solution was able to be captured. Optimization studies found that it was possible to increase the absorption rate of CO2 into the carbonate solution by adding a surfactant to the solution to chemically alter the gas bubble size. The absorption rate of CO2 was increased by as much as 14%. Three coal combustion fly ash materials were chosen as the alkaline industrial waste materials to study the storage CO2 and regeneration the absorbent. X-ray diffraction analysis on reacted fly ash samples confirmed that the captured CO2 reacts with the fly ash materials to form a carbonate mineral, specifically calcite. Studies found that after a five day reaction time, 75% utilization of the waste material for CO2 storage could be achieved, while regenerating the absorbent. The regenerated absorbent exhibited a nearly identical CO2 absorption capacity and CO2 absorption rate as a fresh Na2CO3 solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis will present strategies for the use of plug-in electric vehicles on smart and microgrids. MATLAB is used as the design tool for all models and simulations. First, a scenario will be explored using the dispatchable loads of electric vehicles to stabilize a microgrid with a high penetration of renewable power generation. Grid components for a microgrid with 50% photovoltaic solar production will be sized through an optimization routine to maintain storage system, load, and vehicle states over a 24-hour period. The findings of this portion are that the dispatchable loads can be used to guard against unpredictable losses in renewable generation output. Second, the use of distributed control strategies for the charging of electric vehicles utilizing an agent-based approach on a smart grid will be studied. The vehicles are regarded as additional loads to a primary forecasted load and use information transfer with the grid to make their charging decisions. Three lightweight control strategies and their effects on the power grid will be presented. The findings are that the charging behavior and peak loads on the grid can be reduced through the use of distributed control strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As microgrid power systems gain prevalence and renewable energy comprises greater and greater portions of distributed generation, energy storage becomes important to offset the higher variance of renewable energy sources and maximize their usefulness. One of the emerging techniques is to utilize a combination of lead-acid batteries and ultracapacitors to provide both short and long-term stabilization to microgrid systems. The different energy and power characteristics of batteries and ultracapacitors imply that they ought to be utilized in different ways. Traditional linear controls can use these energy storage systems to stabilize a power grid, but cannot effect more complex interactions. This research explores a fuzzy logic approach to microgrid stabilization. The ability of a fuzzy logic controller to regulate a dc bus in the presence of source and load fluctuations, in a manner comparable to traditional linear control systems, is explored and demonstrated. Furthermore, the expanded capabilities (such as storage balancing, self-protection, and battery optimization) of a fuzzy logic system over a traditional linear control system are shown. System simulation results are presented and validated through hardware-based experiments. These experiments confirm the capabilities of the fuzzy logic control system to regulate bus voltage, balance storage elements, optimize battery usage, and effect self-protection.