3 resultados para Pseudorandom Permutation
em Digital Commons - Michigan Tech
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
The technique of delineating Populus tremuloides (Michx.) clonal colonies based on morphology and phenology has been utilized in many studies and forestry applications since the 1950s. Recently, the availability and robustness of molecular markers has challenged the validity of such approaches for accurate clonal identification. However, genetically sampling an entire stand is largely impractical or impossible. For that reason, it is often necessary to delineate putative genet boundaries for a more selective approach when genetically analyzing a clonal population. Here I re-evaluated the usefulness of phenotypic delineation by: (1) genetically identifying clonal colonies using nuclear microsatellite markers, (2) assessing phenotypic inter- and intraclonal agreement, and (3) determining the accuracy of visible characters to correctly assign ramets to their respective genets. The long-term soil productivity study plot 28 was chosen for analysis and is located in the Ottawa National Forest, MI (46° 37'60.0" N, 89° 12'42.7" W). In total, 32 genets were identified from 181 stems using seven microsatellite markers. The average genet size was 5.5 ramets and six of the largest were selected for phenotypic analyses. Phenotypic analyses included budbreak timing, DBH, bark thickness, bark color or brightness, leaf senescence, leaf serrations, and leaf length ratio. All phenotypic characters, except for DBH, were useful for the analysis of inter- and intraclonal variation and phenotypic delineation. Generally, phenotypic expression was related to genotype with multiple response permutation procedure (MRPP) intraclonal distance values ranging from 0.148 and 0.427 and an observed MRPP delta value=0.221 when the expected delta=0.5. The phenotypic traits, though, overlapped significantly among some clones. When stems were assigned into phenotypic groups, six phenotypic groups were identified with each group containing a dominant genotype or clonal colony. All phenotypic groups contained stems from at least two clonal colonies and no clonal colony was entirely contained within one phenotypic group. These results demonstrate that phenotype varies with genotype and stand clonality can be determined using phenotypic characters, but phenotypic delineation is less precise. I therefore recommend that some genetic identification follow any phenotypic delineation. The amount of genetic identification required for clonal confirmation is likely to vary based on stand and environmental conditions. Further analysis, however, is needed to test these findings in other forest stands and populations.
Resumo:
Northern white cedar (Thuja occidentalis L.) (NWC) swamps are valuable both commercially and ecologically. Unfortunately, many NWC swamps are degraded and information about them is not abundant. Especially there have been no definitive studies about mosses in northern white cedar swamps and how they react to disturbances. Mosses are sensitive to changes in their environment and thus they could be used to assess ecosystem conditions of NWC swamps. The objective of this study was to determine if mosses could be used to asses conditions in NWC swamps and if there are differences between moss communities in disturbed and undisturbed sites. Seventeen sample plots were taken from 12 disturbed and undisturbed sites around upper Michigan and northern Minnesota in the summer of 2012. All mosses occurring on the plots were identified and several associated environmental parameters were measured. The main environmental conditions affecting moss communities were identified with non-metric multidimensional scaling (NMS). Multiple response permutation procedures (MRPP) were run to ascertain if there were significant differences in community composition between disturbances. Indicator species analysis was then done to identify species that are related to different types of disturbances. A one-way ANOVA was used to check for significant differences between species richness and moss cover of undisturbed and disturbed sites. Over all sixty-two moss species were identified. The results indicate that there was no significant difference in species richness or moss cover between disturbed and undisturbed sites. However, moss community composition was affected by disturbance and strongly divided by a wetness gradient. Dicranum fuscescens was found to indicate undisturbed conditions. Calliergon cordifolium and Climacium dendroides indicated disturbed sites with wet conditions. Brotherella recurvans and Eurhynchium pulchellum indicated swamps with other disturbances.