2 resultados para Pseudohalyde ligands

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new series of chiral ferrosalen ligands was designed and synthesized. The special feature of the ferrosalen ligands is that the chirality originated from the planar chiral ferrocenyl structure. For most known salen ligands, chirality comes from central and axial chiral centers. The key building block for the construction of these ferrosalen ligands was synthesized stereoselectively by a chiral auxiliary approach. This approach does not consume any chiral material, and does not require chiral HPLC resolution. Using this method, nine ligands were prepared using ferrocene as the starting material. In addition, the steric hindrance was modulated by changing the cyclopentadienyl group to the more bulky pentamethylcyclopentadienyl- and pentaphenylcyclopentadienyl- groups. The structure of these ligands was established by 1H and 13C NMR. The structure of a ferrosalen-Cu (II) complex was determined by single crystal X-ray diffraction analysis. All the chiral ferrosalen ligands were tested in catalytic asymmetric reactions including enantioselective carbonyl-ene reaction, enantioselective Strecker-type reaction and enantioselective silylcyanation. For the carbonyl-ene reaction, up to 99% yield and 29% enantiomeric excess (ee) were obtained using ligand-Co (III) as the catalysts; For the Strecker-type reaction, a maximum of 20% ee was obtained using ligand-AlCl as the catalyst; For the silylcyanation reaction, up to 99% yield and 26% ee were obtained using ligand-AlCl as the catalyst.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mo(VI) oxo complexes have been persistently sought after as epoxidation catalysts. Further, Mo(V) oxo clusters of the form M4(µ3-X)4 (M = transition metal, X = O, S) have been rigorously studied due to their remarkable structures and also their usefulness as models for electronic studies. The syntheses and characterizations of new Mo(VI) and Mo(V) oxo complexes have been described in this dissertation. Two new complexes MoO2Cl2Ph2P(O)CH2COOH and MoO2Cl2Ph2P(O)C6H4tBuS(O) were synthesized from reactions of “MoO2Cl2” with ligands Ph2P(O)CH2COOH and Ph2P(O)C6H4tBuS(O). Tetrameric packing arrangements comprised of hydrogen bonds were obtained for the complex MoO2Cl2Ph2P(O)CH2COOH and the ligand Ph2P(O)CH2COOH. Further the stability of an Mo-O bond was preferred over the Mo-S bond even though this resulted in the formation of a more strained seven membered ring. Tetranuclear Mo(V) complexes of the form [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2) were synthesized using reactions of MoO2(acac)2 with diphenyl and dimethyl phosphinic acids, in ethanol. In the crystal structure of these complexes four Mo=O units are interconnected by four triply bridging oxygen atoms and bridging phosphinate ligands. The complex exhibited fourfold symmetry as evidenced by a single 31P NMR peak for the P atoms in the coordinated ligands. Reaction of WO2(acac)2 with Ph2POOH in methanol resulted in a dimeric W(VI) complex [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] which contained a packing disorder in its crystal structure. Similar reactions of MoO2(acac)2 with benzoic acid derivatives resulted in dimeric complexes of the form [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4, (p-Cl)C6H4, (2,4-(OH)2)C6H3, (o-I)C6H4) and one tetrameric complex [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2C)C6H4(p-µ-O2C)Mo2O2(acac)2(µ-O)(µ-OC2H5)] with terephthalic acid. 1H NMR proved very useful in the prediction of the formation of dimers with the substituted benzoic acids, which were also confirmed by elemental analyses. The reductive capability of ethanol proved instrumental in the syntheses of Mo(V) tetrameric and dimeric clusters. Synthetic details, IR, 1H and 31P NMR spectroscopy and elemental analyses are reported for all new complexes. Further, single crystal X-ray structures of MoO2Cl2Ph2P(O)CH2COOH, MoO2Cl2Ph2P(O)C6H4tBuS(O), [Mo4(µ3-O)4(µ-O2PR2)4O4], (PR2 = PPh2, PMe2), [(CH3O)2(O)W(µ-O)( µ-O2PPh2)2W(O)(CH3O)2] and [Mo2O2(acac)2(µ-O)(µ-OC2H5)(µ-O2CR)] (R = C6H5, (o-OH)C6H4) are also presented.