2 resultados para Protein Structure Class, Wavelet Transform, Local Holder Exponents
em Digital Commons - Michigan Tech
Resumo:
Wood formation is an economically and environmentally important process and has played a significant role in the evolution of terrestrial plants. Despite its significance, the molecular underpinnings of the process are still poorly understood. We have previously shown that four Lateral Boundary Domain (LBD) transcription factors have important roles in the regulation of wood formation with two (LBD1 and LBD4) involved in secondary phloem and ray cell development and two (LBD15 and LBD18) in secondary xylem formation. Here, we used comparative phylogenetic analyses to test potential roles of the four LBD genes in the evolution of woodiness. We studied the copy number and variation in DNA and amino acid sequences of the four LBDs in a wide range of woody and herbaceous plant taxa with fully sequenced and annotated genomes. LBD1 showed the highest gene copy number across the studied species, and LBD1 gene copy number was strongly and significantly correlated with the level of ray seriation. The lianas, cucumber and grape, with multiseriate ray cells showed the highest gene copy number (12 and 11, respectively). Because lianas’ growth habit requires significant twisting and bending, the less lignified ray parenchyma cells likely facilitate stem flexibility and maintenance of xylem conductivity. We further demonstrate conservation of amino acids in the LBD18 protein sequences that are specific to woody taxa. Neutrality tests showed evidence for strong purifying selection on these gene regions across various orders, indicating adaptive convergent evolution of LBD18. Structural modeling demonstrates that the conserved amino acids have a significant impact on the tertiary protein structure and thus are likely of significant functional importance.
Resumo:
In this thesis, an image enhancement application is developed for low-vision patients when they use iPhones to see images/watch videos. The thesis has two contributions. The first contribution is the new image enhancement algorithm which combines human vision features. The new image enhancement algorithm is modified from a wavelet transform based image enhancement algorithm developed by Dr. Jinshan Tang. Different from the original algorithm, the new image enhancement algorithm combines human visual feature into the algorithm and thus can make the new algorithm more effective. Experimental simulation results show that the proposed algorithm has better visual results than the algorithm without combining visual features. The second contribution of this thesis is the development of a mobile image enhancement application. In this application, users with low-vision can see clearer images on an iPhone which is installed with the application I have developed.