3 resultados para Project-based learning
em Digital Commons - Michigan Tech
Resumo:
Project-based education and portfolio assessments are at the forefront of educational research. This research follows the implementation of a project-based unit in a high school physics class. Students played the role of an engineering firm who designed, built and tested file folder bridges. The purpose was to determine if projectbased learning could improve student attitude toward science and related careers like engineering. Teams of students presented their work in a portfolio for a final assessment of the process of designing, building and testing their bridges.
Resumo:
My dissertation emphasizes a cognitive account of multimodality that explicitly integrates experiential knowledge work into the rhetorical pedagogy that informs so many composition and technical communication programs. In these disciplines, multimodality is widely conceived in terms of what Gunther Kress calls “socialsemiotic” modes of communication shaped primarily by culture. In the cognitive and neurolinguistic theories of Vittorio Gallese and George Lakoff, however, multimodality is described as a key characteristic of our bodies’ sensory-motor systems which link perception to action and action to meaning, grounding all communicative acts in knowledge shaped through body-engaged experience. I argue that this “situated” account of cognition – which closely approximates Maurice Merleau-Ponty’s phenomenology of perception, a major framework for my study – has pedagogical precedence in the mimetic pedagogy that informed ancient Sophistic rhetorical training, and I reveal that training’s multimodal dimensions through a phenomenological exegesis of the concept mimesis. Plato’s denigration of the mimetic tradition and his elevation of conceptual contemplation through reason, out of which developed the classic Cartesian separation of mind from body, resulted in a general degradation of experiential knowledge in Western education. But with the recent introduction into college classrooms of digital technologies and multimedia communication tools, renewed emphasis is being placed on the “hands-on” nature of inventive and productive praxis, necessitating a revision of methods of instruction and assessment that have traditionally privileged the acquisition of conceptual over experiential knowledge. The model of multimodality I construct from Merleau-Ponty’s phenomenology, ancient Sophistic rhetorical pedagogy, and current neuroscientific accounts of situated cognition insists on recognizing the significant role knowledges we acquire experientially play in our reading and writing, speaking and listening, discerning and designing practices.
Resumo:
The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.