4 resultados para Program testing
em Digital Commons - Michigan Tech
Resumo:
Transformers are very important elements of any power system. Unfortunately, they are subjected to through-faults and abnormal operating conditions which can affect not only the transformer itself but also other equipment connected to the transformer. Thus, it is essential to provide sufficient protection for transformers as well as the best possible selectivity and sensitivity of the protection. Nowadays microprocessor-based relays are widely used to protect power equipment. Current differential and voltage protection strategies are used in transformer protection applications and provide fast and sensitive multi-level protection and monitoring. The elements responsible for detecting turn-to-turn and turn-to-ground faults are the negative-sequence percentage differential element and restricted earth-fault (REF) element, respectively. During severe internal faults current transformers can saturate and slow down the speed of relay operation which affects the degree of equipment damage. The scope of this work is to develop a modeling methodology to perform simulations and laboratory tests for internal faults such as turn-to-turn and turn-to-ground for two step-down power transformers with capacity ratings of 11.2 MVA and 290 MVA. The simulated current waveforms are injected to a microprocessor relay to check its sensitivity for these internal faults. Saturation of current transformers is also studied in this work. All simulations are performed with the Alternative Transients Program (ATP) utilizing the internal fault model for three-phase two-winding transformers. The tested microprocessor relay is the SEL-487E current differential and voltage protection relay. The results showed that the ATP internal fault model can be used for testing microprocessor relays for any percentage of turns involved in an internal fault. An interesting observation from the experiments was that the SEL-487E relay is more sensitive to turn-to-turn faults than advertized for the transformers studied. The sensitivity of the restricted earth-fault element was confirmed. CT saturation cases showed that low accuracy CTs can be saturated with a high percentage of turn-to-turn faults, where the CT burden will affect the extent of saturation. Recommendations for future work include more accurate simulation of internal faults, transformer energization inrush, and other scenarios involving core saturation, using the newest version of the internal fault model. The SEL-487E relay or other microprocessor relays should again be tested for performance. Also, application of a grounding bank to the delta-connected side of a transformer will increase the zone of protection and relay performance can be tested for internal ground faults on both sides of a transformer.
Resumo:
State standardized testing has always been a tool to measure a school’s performance and to help evaluate school curriculum. However, with the school of choice legislation in 1992, the MEAP test became a measuring stick to grade schools by and a major tool in attracting school of choice students. Now, declining enrollment and a state budget struggling to stay out of the red have made school of choice students more important than ever before. MEAP scores have become the deciding factor in some cases. For the past five years, the Hancock Middle School staff has been working hard to improve their students’ MEAP scores in accordance with President Bush's “No Child Left Behind” legislation. In 2005, the school was awarded a grant that enabled staff to work for two years on writing and working towards school goals that were based on the improvement of MEAP scores in writing and math. As part of this effort, the school purchased an internet-based program geared at giving students practice on state content standards. This study examined the results of efforts by Hancock Middle School to help improve student scores in mathematics on the MEAP test through the use of an online program called “Study Island.” In the past, the program was used to remediate students, and as a review with an incentive at the end of the year for students completing a certain number of objectives. It had also been used as a review before upcoming MEAP testing in the fall. All of these methods may have helped a few students perform at an increased level on their standardized test, but the question remained of whether a sustained use of the program in a classroom setting would increase an understanding of concepts and performance on the MEAP for the masses. This study addressed this question. Student MEAP scores and Study Island data from experimental and comparison groups of students were compared to understand how a sustained use of Study Island in the classroom would impact student test scores on the MEAP. In addition, these data were analyzed to determine whether Study Island results provide a good indicator of students’ MEAP performance. The results of the study suggest that there were limited benefits related to sustained use of Study Island and gave some indications about the effectiveness of the mathematics curriculum at Hancock Middle School. These results and implications for instruction are discussed.
Resumo:
In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.
Resumo:
This report has two major objectives. First, the results of an action research project conducted at my high school concerning the use of graphic organizers and their effects on students' written expression abilities. The findings from this action research project indicate that the use of graphic organizers can prove beneficial to students. The second major objective of this report is to provide a reflection and evaluation of my experiences as a participant in the Michigan Teacher Excellence Program (MiTEP). This program provided middle and high school science teachers with an opportunity to develop research based pedagogy techniques and develop the skill necessary to serve as leaders within the public school science community. The action research project described in the first chapter of this report was a collaborative project I participated in during my enrollment in ED 5705 at Michigan Technological University. I worked closely with two other teachers in my building - Brytt Ergang and James Wright. We met several times to develop a research question, and a procedure for testing our question. Each of us investigated how the use of graphic organizers by students in our classroom might impact their performance on writing assessments. We each collected data from several of our classes. In my case I collected data from 2 different classes over 2 different assignments. Our data was collected and the results analyzed separately from classroom to classroom. After the individual classroom data and corresponding analysis was compiled my fellow collaborators and I got together to discuss our findings. We worked together to write a conclusion based on our combined results in all of our classes.