3 resultados para Process parameters

em Digital Commons - Michigan Tech


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-screw extrusion is one of the widely used processing methods in plastics industry, which was the third largest manufacturing industry in the United States in 2007 [5]. In order to optimize the single-screw extrusion process, tremendous efforts have been devoted for development of accurate models in the last fifty years, especially for polymer melting in screw extruders. This has led to a good qualitative understanding of the melting process; however, quantitative predictions of melting from various models often have a large error in comparison to the experimental data. Thus, even nowadays, process parameters and the geometry of the extruder channel for the single-screw extrusion are determined by trial and error. Since new polymers are developed frequently, finding the optimum parameters to extrude these polymers by trial and error is costly and time consuming. In order to reduce the time and experimental work required for optimizing the process parameters and the geometry of the extruder channel for a given polymer, the main goal of this research was to perform a coordinated experimental and numerical investigation of melting in screw extrusion. In this work, a full three-dimensional finite element simulation of the two-phase flow in the melting and metering zones of a single-screw extruder was performed by solving the conservation equations for mass, momentum, and energy. The only attempt for such a three-dimensional simulation of melting in screw extruder was more than twenty years back. However, that work had only a limited success because of the capability of computers and mathematical algorithms available at that time. The dramatic improvement of computational power and mathematical knowledge now make it possible to run full 3-D simulations of two-phase flow in single-screw extruders on a desktop PC. In order to verify the numerical predictions from the full 3-D simulations of two-phase flow in single-screw extruders, a detailed experimental study was performed. This experimental study included Maddock screw-freezing experiments, Screw Simulator experiments and material characterization experiments. Maddock screw-freezing experiments were performed in order to visualize the melting profile along the single-screw extruder channel with different screw geometry configurations. These melting profiles were compared with the simulation results. Screw Simulator experiments were performed to collect the shear stress and melting flux data for various polymers. Cone and plate viscometer experiments were performed to obtain the shear viscosity data which is needed in the simulations. An optimization code was developed to optimize two screw geometry parameters, namely, screw lead (pitch) and depth in the metering section of a single-screw extruder, such that the output rate of the extruder was maximized without exceeding the maximum temperature value specified at the exit of the extruder. This optimization code used a mesh partitioning technique in order to obtain the flow domain. The simulations in this flow domain was performed using the code developed to simulate the two-phase flow in single-screw extruders.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The proposed work aims to facilitate the development of a microfluidic platform for the production of advanced microcapsules containing active agents which can be the functional constituents of self-healing composites. The creation of such microcapsules is enabled by the unique flow characteristics within microchannels including precise control over shear and interfacial forces for droplet creation and manipulation as well as the ability to form a solid shell either chemically or via the addition of thermal or irradiative energy. Microchannel design and a study of the fluid dynamics and mechanisms for shell creation are undertaken in order to establish a fabrication approach capable of producing healing-agent-containing microcapsules. An in-depth study of the process parameters has been undertaken in order to elucidate the advantages of this production technique including precise control of size (i.e., monodispersity) and surface morphology of the microcapsules. This project also aims to aid the optimization of the mechanical properties as well as healing performance of self-healing composites by studying the effects of the advantageous properties of the as-produced microcapsules. Scale-up of the microfluidic fabrication using parallel devices on a single chip as well as on-chip microcapsule production and shape control will also be investigated. It will be demonstrated that microfluidic fabrication is a versatile approach for the efficient creation of functional microcapsules allowing for superior design of self-healing composites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a 1-D process scale model used to investigate the chemical dynamics and temporal variability of nitrogen oxides (NOx) and ozone (O3) within and above snowpack at Summit, Greenland for March-May 2009 and estimates surface exchange of NOx between the snowpack and surface layer in April-May 2009. The model assumes the surface of snowflakes have a Liquid Like Layer (LLL) where aqueous chemistry occurs and interacts with the interstitial air of the snowpack. Model parameters and initialization are physically and chemically representative of snowpack at Summit, Greenland and model results are compared to measurements of NOx and O3 collected by our group at Summit, Greenland from 2008-2010. The model paired with measurements confirmed the main hypothesis in literature that photolysis of nitrate on the surface of snowflakes is responsible for nitrogen dioxide (NO2) production in the top ~50 cm of the snowpack at solar noon for March – May time periods in 2009. Nighttime peaks of NO2 in the snowpack for April and May were reproduced with aqueous formation of peroxynitric acid (HNO4) in the top ~50 cm of the snowpack with subsequent mass transfer to the gas phase, decomposition to form NO2 at nighttime, and transportation of the NO2 to depths of 2 meters. Modeled production of HNO4 was hindered in March 2009 due to the low production of its precursor, hydroperoxy radical, resulting in underestimation of nighttime NO2 in the snowpack for March 2009. The aqueous reaction of O3 with formic acid was the major sync of O3 in the snowpack for March-May, 2009. Nitrogen monoxide (NO) production in the top ~50 cm of the snowpack is related to the photolysis of NO2, which underrepresents NO in May of 2009. Modeled surface exchange of NOx in April and May are on the order of 1011 molecules m-2 s-1. Removal of measured downward fluxes of NO and NO2 in measured fluxes resulted in agreement between measured NOx fluxes and modeled surface exchange in April and an order of magnitude deviation in May. Modeled transport of NOx above the snowpack in May shows an order of magnitude increase of NOx fluxes in the first 50 cm of the snowpack and is attributed to the production of NO2 during the day from the thermal decomposition and photolysis of peroxynitric acid with minor contributions of NO from HONO photolysis in the early morning.