8 resultados para Probabilistic cellular automata

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This technical report discusses the application of the Lattice Boltzmann Method (LBM) and Cellular Automata (CA) simulation in fluid flow and particle deposition. The current work focuses on incompressible flow simulation passing cylinders, in which we incorporate the LBM D2Q9 and CA techniques to simulate the fluid flow and particle loading respectively. For the LBM part, the theories of boundary conditions are studied and verified using the Poiseuille flow test. For the CA part, several models regarding simulation of particles are explained. And a new Digital Differential Analyzer (DDA) algorithm is introduced to simulate particle motion in the Boolean model. The numerical results are compared with a previous probability velocity model by Masselot [Masselot 2000], which shows a satisfactory result.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This technical report discusses the application of Lattice Boltzmann Method (LBM) in the fluid flow simulation through porous filter-wall of disordered media. The diesel particulate filter (DPF) is an example of disordered media. DPF is developed as a cutting edge technology to reduce harmful particulate matter in the engine exhaust. Porous filter-wall of DPF traps these soot particles in the after-treatment of the exhaust gas. To examine the phenomena inside the DPF, researchers are looking forward to use the Lattice Boltzmann Method as a promising alternative simulation tool. The lattice Boltzmann method is comparatively a newer numerical scheme and can be used to simulate fluid flow for single-component single-phase, single-component multi-phase. It is also an excellent method for modelling flow through disordered media. The current work focuses on a single-phase fluid flow simulation inside the porous micro-structure using LBM. Firstly, the theory concerning the development of LBM is discussed. LBM evolution is always related to Lattice gas Cellular Automata (LGCA), but it is also shown that this method is a special discretized form of the continuous Boltzmann equation. Since all the simulations are conducted in two-dimensions, the equations developed are in reference with D2Q9 (two-dimensional 9-velocity) model. The artificially created porous micro-structure is used in this study. The flow simulations are conducted by considering air and CO2 gas as fluids. The numerical model used in this study is explained with a flowchart and the coding steps. The numerical code is constructed in MATLAB. Different types of boundary conditions and their importance is discussed separately. Also the equations specific to boundary conditions are derived. The pressure and velocity contours over the porous domain are studied and recorded. The results are compared with the published work. The permeability values obtained in this study can be fitted to the relation proposed by Nabovati [8], and the results are in excellent agreement within porosity range of 0.4 to 0.8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies are suggesting that hurricane hazard patterns (e.g. intensity and frequency) may change as a consequence of the changing global climate. As hurricane patterns change, it can be expected that hurricane damage risks and costs may change as a result. This indicates the necessity to develop hurricane risk assessment models that are capable of accounting for changing hurricane hazard patterns, and develop hurricane mitigation and climatic adaptation strategies. This thesis proposes a comprehensive hurricane risk assessment and mitigation strategies that account for a changing global climate and that has the ability of being adapted to various types of infrastructure including residential buildings and power distribution poles. The framework includes hurricane wind field models, hurricane surge height models and hurricane vulnerability models to estimate damage risks due to hurricane wind speed, hurricane frequency, and hurricane-induced storm surge and accounts for the timedependant properties of these parameters as a result of climate change. The research then implements median insured house values, discount rates, housing inventory, etc. to estimate hurricane damage costs to residential construction. The framework was also adapted to timber distribution poles to assess the impacts climate change may have on timber distribution pole failure. This research finds that climate change may have a significant impact on the hurricane damage risks and damage costs of residential construction and timber distribution poles. In an effort to reduce damage costs, this research develops mitigation/adaptation strategies for residential construction and timber distribution poles. The costeffectiveness of these adaptation/mitigation strategies are evaluated through the use of a Life-Cycle Cost (LCC) analysis. In addition, a scenario-based analysis of mitigation strategies for timber distribution poles is included. For both residential construction and timber distribution poles, adaptation/mitigation measures were found to reduce damage costs. Finally, the research develops the Coastal Community Social Vulnerability Index (CCSVI) to include the social vulnerability of a region to hurricane hazards within this hurricane risk assessment. This index quantifies the social vulnerability of a region, by combining various social characteristics of a region with time-dependant parameters of hurricanes (i.e. hurricane wind and hurricane-induced storm surge). Climate change was found to have an impact on the CCSVI (i.e. climate change may have an impact on the social vulnerability of hurricane-prone regions).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxidative stress, intense light exposure and oxygen imbalances such as hypoxic or hyperoxic conditions perturb mitochondria, nuclear function and further lead to cellular damage of retina and retinal pigment epithelial (RPE) cells. Our major aim is to understand the various biochemical and proteomic events that occur during the progression of retina and RPE cell death. The comprehensive objectives of this dissertation are to understand the functional aspects of protein expression, posttranslational modifications, protein or lipid binding changes, phenotypic, morphological alterations and their regulation during the retina and RPE apoptosis under oxidative stress. The entire study is divided into four chapters Chapter 1 contains introduction and background on apoptotic signaling in retina and RPE cells. In chapter 2, we demonstrated that the oxidative stress biomarker prohibitin shuttles between mitochondria and nucleus as an anti-apoptotic molecule and acts as a transcriptional regulator by altering its lipid binding affinity and by posttranslational modifications during oxidative damage to the retina and RPE. In chapter 3, we demonstrated that oxidative and photo-oxidative stress induced nitric oxide regulates the RPE apoptosis by altering serine/threonine protein phosphatase 2A (PP2A) catalytic subunit, vimentin phosphorylation and Bcl xL expression regulation in the RPE cells in vitro. In chapter 4, we further analyzed the differential expression of prohibitin in the retina and RPE during oxidative stress, diabetic retinopathy (DR) and age-related macular degeneration (AMD) condition. Our analysis of postmortem retinas reveals that prohibitin is significantly increased in aged and AMD retina, and decreased in retinas of human diabetic retinopathy and RPE of AMD. Our study demonstrates that prohibitin levels determine the apoptotic signaling in the retina and RPE during retinal degenerative disease progression.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The municipality of San Juan La Laguna, Guatemala is home to approximately 5,200 people and located on the western side of the Lake Atitlán caldera. Steep slopes surround all but the eastern side of San Juan. The Lake Atitlán watershed is susceptible to many natural hazards, but most predictable are the landslides that can occur annually with each rainy season, especially during high-intensity events. Hurricane Stan hit Guatemala in October 2005; the resulting flooding and landslides devastated the Atitlán region. Locations of landslide and non-landslide points were obtained from field observations and orthophotos taken following Hurricane Stan. This study used data from multiple attributes, at every landslide and non-landslide point, and applied different multivariate analyses to optimize a model for landslides prediction during high-intensity precipitation events like Hurricane Stan. The attributes considered in this study are: geology, geomorphology, distance to faults and streams, land use, slope, aspect, curvature, plan curvature, profile curvature and topographic wetness index. The attributes were pre-evaluated for their ability to predict landslides using four different attribute evaluators, all available in the open source data mining software Weka: filtered subset, information gain, gain ratio and chi-squared. Three multivariate algorithms (decision tree J48, logistic regression and BayesNet) were optimized for landslide prediction using different attributes. The following statistical parameters were used to evaluate model accuracy: precision, recall, F measure and area under the receiver operating characteristic (ROC) curve. The algorithm BayesNet yielded the most accurate model and was used to build a probability map of landslide initiation points. The probability map developed in this study was also compared to the results of a bivariate landslide susceptibility analysis conducted for the watershed, encompassing Lake Atitlán and San Juan. Landslides from Tropical Storm Agatha 2010 were used to independently validate this study’s multivariate model and the bivariate model. The ultimate aim of this study is to share the methodology and results with municipal contacts from the author's time as a U.S. Peace Corps volunteer, to facilitate more effective future landslide hazard planning and mitigation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Patterns of increasing leaf mass per area (LMA), area-based leaf nitrogen (Narea), and carbon isotope composition (δ13C) with increasing height in the canopy have been attributed to light gradients or hydraulic limitation in tall trees. Theoretical optimal distributions of LMA and Narea that scale with light maximize canopy photosynthesis; however, sub-optimal distributions are often observed due to hydraulic constraints on leaf development. Using observational, experimental, and modeling approaches, we investigated the response of leaf functional traits (LMA, density, thickness, and leaf nitrogen), leaf carbon isotope composition (δ13C), and cellular structure to light availability, height, and leaf water potential (Ψl) in an Acer saccharum forest to tease apart the influence of light and hydraulic limitations. LMA, leaf and palisade layer thickness, and leaf density were greater at greater light availability but similar heights, highlighting the strong control of light on leaf morphology and cellular structure. Experimental shading decreased both LMA and area-based leaf nitrogen (Narea) and revealed that LMA and Narea were more strongly correlated with height earlier in the growing season and with light later in the growing season. The supply of CO2 to leaves at higher heights appeared to be constrained by stomatal sensitivity to vapor pressure deficit (VPD) or midday leaf water potential, as indicated by increasing δ13C and VPD and decreasing midday Ψl with height. Model simulations showed that daily canopy photosynthesis was biased during the early growing season when seasonality was not accounted for, and was biased throughout the growing season when vertical gradients in LMA and Narea were not accounted for. Overall, our results suggest that leaves acclimate to light soon after leaf expansion, through an accumulation of leaf carbon, thickening of palisade layers and increased LMA, and reduction in stomatal sensitivity to Ψl or VPD. This period of light acclimation in leaves appears to optimize leaf function over time, despite height-related constraints early in the growing season. Our results imply that vertical gradients in leaf functional traits and leaf acclimation to light should be incorporated in canopy function models in order to refine estimates of canopy photosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Planning in realistic domains typically involves reasoning under uncertainty, operating under time and resource constraints, and finding the optimal subset of goals to work on. Creating optimal plans that consider all of these features is a computationally complex, challenging problem. This dissertation develops an AO* search based planner named CPOAO* (Concurrent, Probabilistic, Over-subscription AO*) which incorporates durative actions, time and resource constraints, concurrent execution, over-subscribed goals, and probabilistic actions. To handle concurrent actions, action combinations rather than individual actions are taken as plan steps. Plan optimization is explored by adding two novel aspects to plans. First, parallel steps that serve the same goal are used to increase the plan’s probability of success. Traditionally, only parallel steps that serve different goals are used to reduce plan execution time. Second, actions that are executing but are no longer useful can be terminated to save resources and time. Conventional planners assume that all actions that were started will be carried out to completion. To reduce the size of the search space, several domain independent heuristic functions and pruning techniques were developed. The key ideas are to exploit dominance relations for candidate action sets and to develop relaxed planning graphs to estimate the expected rewards of states. This thesis contributes (1) an AO* based planner to generate parallel plans, (2) domain independent heuristics to increase planner efficiency, and (3) the ability to execute redundant actions and to terminate useless actions to increase plan efficiency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sensor networks have been an active research area in the past decade due to the variety of their applications. Many research studies have been conducted to solve the problems underlying the middleware services of sensor networks, such as self-deployment, self-localization, and synchronization. With the provided middleware services, sensor networks have grown into a mature technology to be used as a detection and surveillance paradigm for many real-world applications. The individual sensors are small in size. Thus, they can be deployed in areas with limited space to make unobstructed measurements in locations where the traditional centralized systems would have trouble to reach. However, there are a few physical limitations to sensor networks, which can prevent sensors from performing at their maximum potential. Individual sensors have limited power supply, the wireless band can get very cluttered when multiple sensors try to transmit at the same time. Furthermore, the individual sensors have limited communication range, so the network may not have a 1-hop communication topology and routing can be a problem in many cases. Carefully designed algorithms can alleviate the physical limitations of sensor networks, and allow them to be utilized to their full potential. Graphical models are an intuitive choice for designing sensor network algorithms. This thesis focuses on a classic application in sensor networks, detecting and tracking of targets. It develops feasible inference techniques for sensor networks using statistical graphical model inference, binary sensor detection, events isolation and dynamic clustering. The main strategy is to use only binary data for rough global inferences, and then dynamically form small scale clusters around the target for detailed computations. This framework is then extended to network topology manipulation, so that the framework developed can be applied to tracking in different network topology settings. Finally the system was tested in both simulation and real-world environments. The simulations were performed on various network topologies, from regularly distributed networks to randomly distributed networks. The results show that the algorithm performs well in randomly distributed networks, and hence requires minimum deployment effort. The experiments were carried out in both corridor and open space settings. A in-home falling detection system was simulated with real-world settings, it was setup with 30 bumblebee radars and 30 ultrasonic sensors driven by TI EZ430-RF2500 boards scanning a typical 800 sqft apartment. Bumblebee radars are calibrated to detect the falling of human body, and the two-tier tracking algorithm is used on the ultrasonic sensors to track the location of the elderly people.