1 resultado para Prestress
em Digital Commons - Michigan Tech
Resumo:
The loss of prestressing force over time influences the long-term deflection of the prestressed concrete element. Prestress losses are inherently complex due to the interaction of concrete creep, concrete shrinkage, and steel relaxation. Implementing advanced materials such as ultra-high performance concrete (UHPC) further complicates the estimation of prestress losses because of the changes in material models dependent on curing regime. Past research shows compressive creep is "locked in" when UHPC cylinders are subjected to thermal treatment before being loaded in compression. However, the current precasting manufacturing process would typically load the element (through prestressing strand release from the prestressing bed) before the element would be taken to the curing facility. Members of many ages are stored until curing could be applied to all of them at once. This research was conducted to determine the impact of variable curing times for UHPC on the prestress losses, and hence deflections. Three UHPC beams, a rectangular section, a modified bulb tee section, and a pi-girder, were assessed for losses and deflections using an incremental time step approach and material models specific to UHPC based on compressive creep and shrinkage testing. Results show that although it is important for prestressed UHPC beams to be thermally treated, to "lock in" material properties, the timing of thermal treatment leads to negligible differences in long-term deflections. Results also show that for UHPC elements that are thermally treated, changes in deflection are caused only by external loads because prestress losses are "locked-in" following thermal treatment.