5 resultados para Preservice Science Teachers
em Digital Commons - Michigan Tech
Resumo:
This report has two major objectives. First, the results of an action research project conducted at my high school concerning the use of graphic organizers and their effects on students' written expression abilities. The findings from this action research project indicate that the use of graphic organizers can prove beneficial to students. The second major objective of this report is to provide a reflection and evaluation of my experiences as a participant in the Michigan Teacher Excellence Program (MiTEP). This program provided middle and high school science teachers with an opportunity to develop research based pedagogy techniques and develop the skill necessary to serve as leaders within the public school science community. The action research project described in the first chapter of this report was a collaborative project I participated in during my enrollment in ED 5705 at Michigan Technological University. I worked closely with two other teachers in my building - Brytt Ergang and James Wright. We met several times to develop a research question, and a procedure for testing our question. Each of us investigated how the use of graphic organizers by students in our classroom might impact their performance on writing assessments. We each collected data from several of our classes. In my case I collected data from 2 different classes over 2 different assignments. Our data was collected and the results analyzed separately from classroom to classroom. After the individual classroom data and corresponding analysis was compiled my fellow collaborators and I got together to discuss our findings. We worked together to write a conclusion based on our combined results in all of our classes.
Resumo:
This report is a summary of the effects of the Michigan Teacher Excellence Program (MITEP) on me as a science educator. The first chapter is a report of an action research project jointly authored with two other science teachers participating in the MITEP program titled “Station Activities and Misconceptions in the Chemistry Classroom.” The second chapter is a reflective essay evaluating the impacts of the MITEP experience on my teaching skills and practice, knowledge of science education and science education research, and leadership skills. The most significant impacts were a dramatic increase in my earth science content knowledge, a deeper understanding of inquiry-based teaching methods, and an expanded professional network of science educators.
Resumo:
This dissertation serves as a call to geoscientists to share responsibility with K-12 educators for increasing Earth science literacy. When partnerships are created among K-12 educators and geoscientists, the synergy created can promote Earth science literacy in students, teachers, and the broader community. The research described here resulted in development of tools that can support effective professional development for teachers. One tool is used during the planning stages to structure a professional development program, another set of tools supports measurement of the effectiveness of a development program, and the third tool supports sustainability of professional development programs. The Michigan Teacher Excellence Program (MiTEP), a Math/Science Partnership project funded by the National Science Foundation, served as the test bed for developing and testing these tools. The first tool, the planning tool, is the Earth Science Literacy Principles (ESLP). The ESLP served as a planning tool for the two-week summer field courses as part of the MiTEP program. The ESLP, published in 2009, clearly describe what an Earth science literate person should know. The ESLP consists of nine big ideas and their supporting fundamental concepts. Using the ESLP for planning a professional development program assisted both instructors and teacher-participants focus on important concepts throughout the professional development activity. The measurement tools were developed to measure change in teachers’ Earth science content-area knowledge and perceptions related to teaching and learning that result from participating in a professional development program. The first measurement tool, the Earth System Concept Inventory (ESCI), directly measures content-area knowledge through a succession of multiple-choice questions that are aligned with the content of the professional development experience. The second measurement, an exit survey, collects qualitative data from teachers regarding their impression of the professional development. Both the ESCI and the exit survey were tested for validity and reliability. Lesson study is discussed here as a strategy for sustaining professional development in a school or a district after the end of a professional development activity. Lesson study, as described here, was offered as a formal course. Teachers engaged in lesson study worked collaboratively to design and test lessons that improve the teachers’ classroom practices. Data regarding the impact of the lesson study activity were acquired through surveys, written documents, and group interviews. The data are interpreted to indicate that the lesson study process improved teacher quality and classroom practices. In the case described here, the lesson study process was adopted by the teachers’ district and currently serves as part of the district’s work in Professional Learning Communities, resulting in ongoing professional development throughout the district.
Resumo:
Climate science and climate change are included in the Next Generation Science Standards, curriculum standards that were released in 2013. How to incorporate these topics, especially climate change, has been a difficult task for teachers. A team of scientists are studying aerosols in the free troposphere; what their properties are, how they change while in the atmosphere and where they came from. Lessons were created based on this real, ongoing scientific research being conducted in the Azores. During these activities, students are exposed to what scientists actually do in the form of videos and participate in similar tasks such as conducting experiments, collecting data, and analyzing data. At the conclusion of the lessons, students will form conclusions based on the evidence they have at the time.
Resumo:
The use of intriguing open-ended quick-write prompts within the Basotho science classroom could potentially provide a way for secondary teachers in Lesotho to have a time-efficient alternative to stimulate student thinking and increase critical thinking or application of scientific principles. Writing can be used as a powerful means to improve the achievement of students across many subject areas, including the sciences (Moore, 1993; Rivard, 1994; Rillero, Zambo, Cleland, and Ryan, 1996; Greenstein, 2013). This study focuses on the use of a non-traditional nor extensively studied writing method that could potentially support learning in science. A quasi-experimental research design, with a control and experimental group, was applied. The study was conducted at two schools, with one experimental classroom in one school and a second control group classroom in the second school for a period of 4 weeks. 51 Form B (US Grade 9 equivalent) students participated as the experimental group and 43 Form B students as the control group. In an effort to assess learning achievement, a 1 hour (35 mark) pre-test evaluation was made by and given to students by Basotho teachers at the beginning of this study to have an idea of student’s previous knowledge. Topics covered were Static Electricity, Current Electricity, Electromagnetic Waves, and Chemistry of Water. After the experimental trial period, an almost completely identical post-test evaluation was given to students in the same fashion to observe and compare gains in achievement. Test data was analyzed using an inferential statistics procedure that compared means and gains in knowledge made by the experimental and control groups. Difference between the gains of mean pre-test and post-test scores were statistically significant within each group, but were not statistically significant when the control and experimental groups were compared. Therefore, there was no clear practical effect. Qualitative data from teachers’ journals and students’ written feedback provides insight on the assessments, incorporation of the teaching method, and the development of participating students. Both mid and post-study student feedback shows that students had an overall positive and beneficial experience participating in this activity. Assessments and teacher journals showed areas of strength and weaknesses in student learning and on differences in teaching styles. They also helped support some feedback claims made by students. Areas of further research and improvement of the incorporation of this teaching method in the Basotho secondary science classroom are explored.