3 resultados para Política local e regional
em Digital Commons - Michigan Tech
Resumo:
Groundwater pumping from aquifers in hydraulic connection with nearby streams is known to cause adverse impacts by decreasing flows to levels below those necessary to maintain aquatic ecosystems. The recent passage of the Great Lakes--St. Lawrence River Basin Water Resources Compact has brought attention to this issue in the Great Lakes region. In particular, the legislation requires the Great Lakes states to enact measures for limiting water withdrawals that can cause adverse ecosystem impacts. This study explores how both hydrogeologic and environmental flow limitations constrain groundwater availability in the Great Lakes Basin. A methodology for calculating maximum allowable pumping rates is presented. Groundwater availability across the basin is shown to be constrained by a combination of hydrogeologic yield and environmental flow limitations varying over both local and regional scales. The results are sensitive to factors such as pumping time and streamflow depletion limits as well as streambed conductance. Understanding how these restrictions constrain groundwater usage and which hydrogeologic characteristics and spatial variables have the most influence on potential streamflow depletions has important water resources policy and management implications.
Resumo:
Today sustainable development is a very pertinent issue. Communities do not want companies, specifically mining companies, to deplete a natural resource and leave. The goal is to minimize the negative impacts of mining and the boom/bust cycles of natural resource extraction. In this study a three part framework was developed to analyze the sustainability of the Flambeau Mine in Ladysmith, Wisconsin. The first and second part dealt with an in-depth local and regional analysis and whether the community was developing within its own vision. The third part used nine sustainability measures including: 1. Need Present Generation 2. Future Need 3. Acceptable Legacy 4. Full-Cost 5. Contribution to Economic Development 6. Equity 7. Consent 8. Respect for Ecological Limits, Maintenance of Ecological Integrity and Landscape Requirements 9. Offsetting Restoration This study concluded that the Flambeau Mine was sustainable relative to the first two criteria and that it can be considered mostly sustainable relative to the nine criteria. Overall it can be stated that the Flambeau Mine was a beneficial project to the Ladysmith Wisconsin area. Additionally it appeared to decrease the public’s negative perception of mining. Recommendations for future analytical work are made. Suggestions are made as to how mining companies could increase the potential for the attainment of sustainability in projects. It is recommended that this framework be used by other industries.
Resumo:
The Pacaya volcanic complex is part of the Central American volcanic arc, which is associated with the subduction of the Cocos tectonic plate under the Caribbean plate. Located 30 km south of Guatemala City, Pacaya is situated on the southern rim of the Amatitlan Caldera. It is the largest post-caldera volcano, and has been one of Central America’s most active volcanoes over the last 500 years. Between 400 and 2000 years B.P, the Pacaya volcano had experienced a huge collapse, which resulted in the formation of horseshoe-shaped scarp that is still visible. In the recent years, several smaller collapses have been associated with the activity of the volcano (in 1961 and 2010) affecting its northwestern flanks, which are likely to be induced by the local and regional stress changes. The similar orientation of dry and volcanic fissures and the distribution of new vents would likely explain the reactivation of the pre-existing stress configuration responsible for the old-collapse. This paper presents the first stability analysis of the Pacaya volcanic flank. The inputs for the geological and geotechnical models were defined based on the stratigraphical, lithological, structural data, and material properties obtained from field survey and lab tests. According to the mechanical characteristics, three lithotechnical units were defined: Lava, Lava-Breccia and Breccia-Lava. The Hoek and Brown’s failure criterion was applied for each lithotechnical unit and the rock mass friction angle, apparent cohesion, and strength and deformation characteristics were computed in a specified stress range. Further, the stability of the volcano was evaluated by two-dimensional analysis performed by Limit Equilibrium (LEM, ROCSCIENCE) and Finite Element Method (FEM, PHASE 2 7.0). The stability analysis mainly focused on the modern Pacaya volcano built inside the collapse amphitheatre of “Old Pacaya”. The volcanic instability was assessed based on the variability of safety factor using deterministic, sensitivity, and probabilistic analysis considering the gravitational instability and the effects of external forces such as magma pressure and seismicity as potential triggering mechanisms of lateral collapse. The preliminary results from the analysis provide two insights: first, the least stable sector is on the south-western flank of the volcano; second, the lowest safety factor value suggests that the edifice is stable under gravity alone, and the external triggering mechanism can represent a likely destabilizing factor.