2 resultados para Pointing in presentations
em Digital Commons - Michigan Tech
Resumo:
A free-space optical (FSO) laser communication system with perfect fast-tracking experiences random power fading due to atmospheric turbulence. For a FSO communication system without fast-tracking or with imperfect fast-tracking, the fading probability density function (pdf) is also affected by the pointing error. In this thesis, the overall fading pdfs of FSO communication system with pointing errors are calculated using an analytical method based on the fast-tracked on-axis and off-axis fading pdfs and the fast-tracked beam profile of a turbulence channel. The overall fading pdf is firstly studied for the FSO communication system with collimated laser beam. Large-scale numerical wave-optics simulations are performed to verify the analytically calculated fading pdf with collimated beam under various turbulence channels and pointing errors. The calculated overall fading pdfs are almost identical to the directly simulated fading pdfs. The calculated overall fading pdfs are also compared with the gamma-gamma (GG) and the log-normal (LN) fading pdf models. They fit better than both the GG and LN fading pdf models under different receiver aperture sizes in all the studied cases. Further, the analytical method is expanded to the FSO communication system with beam diverging angle case. It is shown that the gamma pdf model is still valid for the fast-tracked on-axis and off-axis fading pdfs with point-like receiver aperture when the laser beam is propagated with beam diverging angle. Large-scale numerical wave-optics simulations prove that the analytically calculated fading pdfs perfectly fit the overall fading pdfs for both focused and diverged beam cases. The influence of the fast-tracked on-axis and off-axis fading pdfs, the fast-tracked beam profile, and the pointing error on the overall fading pdf is also discussed. At last, the analytical method is compared with the previous heuristic fading pdf models proposed since 1970s. Although some of previously proposed fading pdf models provide close fit to the experiment and simulation data, these close fits only exist under particular conditions. Only analytical method shows accurate fit to the directly simulated fading pdfs under different turbulence strength, propagation distances, receiver aperture sizes and pointing errors.
Resumo:
Today’s technology is evolving at an exponential rate. Everyday technology is finding more inroads into our education system. This study seeks to determine if having access to technology, including iPad tablets and a teacher's physical science webpage resources (videos, PowerPoint® presentations, and audio podcasts), assists ninth grade high school students in attaining greater comprehension and improved scientific literacy. Comprehension of the science concepts was measured by comparing current student pretest and post test scores on a teacher-written assessment. The current student post test scores were compared with prior classes’ (2010-2011 and 2009-2010) to determine if there was a difference in outcomes between the technology interventions and traditional instruction. Students entered responses to a technology survey that measured intervention usage and their perception of helpfulness of each intervention. The current year class’ mean composite scores, between the pretest and post test increased by 6.9 points (32.5%). Student composite scores also demonstrated that the interventions were successful in helping a majority of students (64.7%) attain the curriculum goals. The interventions were also successful in increasing student scientific literacy by meeting all of Bloom's cognitive levels that were assessed. When compared with prior 2010-2011 and 2009-2010 classes, the current class received a higher mean post test score indicating a positive effect of the use of technological interventions. The survey showed a majority of students utilized at least some of the technology interventions and perceived them as helpful, especially the videos and PowerPoint® presentations.