2 resultados para Planning decision support systems
em Digital Commons - Michigan Tech
Resumo:
Routine bridge inspections require labor intensive and highly subjective visual interpretation to determine bridge deck surface condition. Light Detection and Ranging (LiDAR) a relatively new class of survey instrument has become a popular and increasingly used technology for providing as-built and inventory data in civil applications. While an increasing number of private and governmental agencies possess terrestrial and mobile LiDAR systems, an understanding of the technology’s capabilities and potential applications continues to evolve. LiDAR is a line-of-sight instrument and as such, care must be taken when establishing scan locations and resolution to allow the capture of data at an adequate resolution for defining features that contribute to the analysis of bridge deck surface condition. Information such as the location, area, and volume of spalling on deck surfaces, undersides, and support columns can be derived from properly collected LiDAR point clouds. The LiDAR point clouds contain information that can provide quantitative surface condition information, resulting in more accurate structural health monitoring. LiDAR scans were collected at three study bridges, each of which displayed a varying degree of degradation. A variety of commercially available analysis tools and an independently developed algorithm written in ArcGIS Python (ArcPy) were used to locate and quantify surface defects such as location, volume, and area of spalls. The results were visual and numerically displayed in a user-friendly web-based decision support tool integrating prior bridge condition metrics for comparison. LiDAR data processing procedures along with strengths and limitations of point clouds for defining features useful for assessing bridge deck condition are discussed. Point cloud density and incidence angle are two attributes that must be managed carefully to ensure data collected are of high quality and useful for bridge condition evaluation. When collected properly to ensure effective evaluation of bridge surface condition, LiDAR data can be analyzed to provide a useful data set from which to derive bridge deck condition information.
Resumo:
Undergraduate education has a historical tradition of preparing students to meet the problem-solving challenges they will encounter in work, civic, and personal contexts. This thesis research was conducted to study the role of rhetoric in engineering problem solving and decision making and to pose pedagogical strategies for preparing undergraduate students for workplace problem solving. Exploratory interviews with engineering managers as well as the heuristic analyses of engineering A3 project planning reports suggest that Aristotelian rhetorical principles are critical to the engineer's success: Engineers must ascertain the rhetorical situation surrounding engineering problems; apply and adapt invention heuristics to conduct inquiry; draw from their investigation to find innovative solutions; and influence decision making by navigating workplace decision-making systems and audiences using rhetorically constructed discourse. To prepare undergraduates for workplace problem solving, university educators are challenged to help undergraduates understand the exigence and realize the kairotic potential inherent in rhetorical problem solving. This thesis offers pedagogical strategies that focus on mentoring learning communities in problem-posing experiences that are situated in many disciplinary, work, and civic contexts. Undergraduates build a flexible rhetorical technê for problem solving as they navigate the nuances of relevant problem-solving systems through the lens of rhetorical practice.