3 resultados para Piété
em Digital Commons - Michigan Tech
Resumo:
In Panama, one of the Environmental Health (EH) Sector’s primary goals is to improve the health of rural Panamanians by helping them to adopt behaviors and practices that improve access to and use of sanitation systems. In complying with this goal, the EH sector has used participatory development models to improve hygiene and increase access to latrines through volunteer managed latrine construction projects. Unfortunately, there is little understanding of the long term sustainability of these interventions after the volunteers have completed their service. With the Peace Corps adapting their Monitoring, Reporting, and Evaluation procedures, it is appropriate to evaluate the sustainability of sanitation interventions offering recommendations for the adaptions of the EH training program, project management, and evaluation procedures. Recognizing the need for evaluation of past latrine projects, the author performed a post project assessment of 19 pit latrine projects using participatory analysis methodologies. First, the author reviewed volunteers’ perspectives of pit latrine projects in a survey. Then, for comparison, the author performed a survey of latrine projects using a benchmarking scoring system to rate solid waste management, drainage, latrine siting, latrine condition, and hygiene. It was observed that the Sanitation WASH matrix created by the author was an effective tool for evaluating the efficacy of sanitation interventions. Overall more than 75%, of latrines constructed were in use. However, there were some areas where improvements could be made for both latrine construction and health and hygiene. The latrines scored poorly on the indicators related to the privacy structure and seat covers. Interestingly those are the two items least likely to be included in project subsidies. Furthermore, scores for hygiene-related indicators were low; particularly those related to hand washing and cleanliness of the kitchen, indicating potential for improvement in hygiene education. Based on these outcomes, the EH sector should consider including subsidies and standardized designs for privacy structures and seat covers for latrines. In addition, the universal adoption of contracts and/or deposits for project beneficiaries is expected to improve the completion of latrines. In order to address the low scores in the health and hygiene indicators, the EH sector should adapt volunteer training, in addition to standardizing health and hygiene intervention procedures. In doing so, the sector should mimic the Community Health Club model that has shown success in improving health and hygiene indicators, as well as use a training session plan format similar to those in the Water Committee Seminar manual. Finally, the sector should have an experienced volunteer dedicated to program oversight and post-project monitoring and evaluation.
Resumo:
The prevalence of Ventilated Improved Pit (VIP) latrines in Ghana suggests that the design must have a high user acceptance. The two key factors attributed to user acceptance of a VIP latrine over an alternative latrine design, such as the basic pit latrine, are its ability to remove foul odors and maintain low fly populations; both of which are a direct result of an adequate ventilation flow rate. Adequate ventilation for odorless conditions in a VIP latrine has been defined by the United Nations Development Program (UNDP) and the World Bank, as an air flow rate equivalent to 6 air changes per hour (6 ACH) of the superstructure’s air volume. Additionally, the UNDP determined that the three primary factors that affect ventilation are: 1) wind passing over the mouth of the vent pipe, 2) wind passing into the superstructure, and 3) solar radiation on to the vent pipe. Previous studies also indicate that vent pipes with larger diameters increase flow rates, and the application of carbonaceous materials to the pit sludge reduces odor and insect prevalence. Furthermore, proper design and construction is critical for the correct functioning of VIP latrines. Under-designing could cause problems with odor and insect control; over-designing would increase costs unnecessarily, thereby making it potentially unaffordable for benefactors to independently construct, repair or replace a VIP latrine. The present study evaluated the design of VIP latrines used by rural communities in the Upper West Region of Ghana with the focus of assessing adequate ventilation for odor removal and insect control. Thirty VIP latrines from six communities in the Upper West Region of Ghana were sampled. Each VIP latrine’s ventilation flow rate and micro-environment was measured using a hot-wire anemometer probe and portable weather station for a minimum of four hours. To capture any temporal or seasonal variations in ventilation, ten of the latrines were sampled monthly over the course of three months for a minimum of 12 hours. A latrine usage survey and a cost analysis were also conducted to further assess the VIP latrine as an appropriated technology for sustainable development in the Upper West Region. It was found that the average air flow rate over the entire sample set was 11.3 m3/hr. The minimum and maximum air flow rates were 0.0 m3/hr and 48.0 m3/hr respectively. Only 1 of the 30 VIP latrines (3%) was found to have an air flow rate greater than the UNDP-defined odorless condition of 6 ACH. Furthermore, 19 VIP latrines (63%) were found to have an average air flow rate of less than half the flow rate required to achieve 6 ACH. The dominant factors affecting ventilation flow rate were wind passing over the mouth of the vent pipe and air buoyancy forces, which were the effect of differences in temperature between the substructure and the ambient environment. Of 76 usable VIP latrines found in one community, 68.4% were in actual use. The cost of a VIP latrine was found to be equivalent to approximately 12% of the mean annual household income for Upper West Region inhabitants.
Resumo:
The integration of remote monitoring techniques at different scales is of crucial importance for monitoring of volcanoes and assessment of the associated hazard. In this optic, technological advancement and collaboration between research groups also play a key role. Vhub is a community cyberinfrastructure platform designed for collaboration in volcanology research. Within the Vhub framework, this dissertation focuses on two research themes, both representing novel applications of remotely sensed data in volcanology: advancement in the acquisition of topographic data via active techniques and application of passive multi-spectral satellite data to monitoring of vegetated volcanoes. Measuring surface deformation is a critical issue in analogue modelling of Earth science phenomena. I present a novel application of the Microsoft Kinect sensor to measurement of vertical and horizontal displacements in analogue models. Specifically, I quantified vertical displacement in a scaled analogue model of Nisyros volcano, Greece, simulating magmatic deflation and inflation and related surface deformation, and included the horizontal component to reconstruct 3D models of pit crater formation. The detection of active faults around volcanoes is of importance for seismic and volcanic hazard assessment, but not a simple task to be achieved using analogue models. I present new evidence of neotectonic deformation along a north-south trending fault from the Mt Shasta debris avalanche deposit (DAD), northern California. The fault was identified on an airborne LiDAR campaign of part of the region interested by the DAD and then confirmed in the field. High resolution LiDAR can be utilized also for geomorphological assessment of DADs, and I describe a size-distance analysis to document geomorphological aspects of hummock in the Shasta DAD. Relating the remote observations of volcanic passive degassing to conditions and impacts on the ground provides an increased understanding of volcanic degassing and how satellite-based monitoring can be used to inform hazard management strategies in nearreal time. Combining a variety of satellite-based spectral time series I aim to perform the first space-based assessment of the impacts of sulfur dioxide emissions from Turrialba volcano, Costa Rica, on vegetation in the surrounding environment, and establish whether vegetation indices could be used more broadly to detect volcanic unrest.