7 resultados para Physical mechanisms
em Digital Commons - Michigan Tech
Resumo:
The physics of the operation of singe-electron tunneling devices (SEDs) and singe-electron tunneling transistors (SETs), especially of those with multiple nanometer-sized islands, has remained poorly understood in spite of some intensive experimental and theoretical research. This computational study examines the current-voltage (IV) characteristics of multi-island single-electron devices using a newly developed multi-island transport simulator (MITS) that is based on semi-classical tunneling theory and kinetic Monte Carlo simulation. The dependence of device characteristics on physical device parameters is explored, and the physical mechanisms that lead to the Coulomb blockade (CB) and Coulomb staircase (CS) characteristics are proposed. Simulations using MITS demonstrate that the overall IV characteristics in a device with a random distribution of islands are a result of a complex interplay among those factors that affect the tunneling rates that are fixed a priori (e.g. island sizes, island separations, temperature, gate bias, etc.), and the evolving charge state of the system, which changes as the source-drain bias (VSD) is changed. With increasing VSD, a multi-island device has to overcome multiple discrete energy barriers (up-steps) before it reaches the threshold voltage (Vth). Beyond Vth, current flow is rate-limited by slow junctions, which leads to the CS structures in the IV characteristic. Each step in the CS is characterized by a unique distribution of island charges with an associated distribution of tunneling probabilities. MITS simulation studies done on one-dimensional (1D) disordered chains show that longer chains are better suited for switching applications as Vth increases with increasing chain length. They are also able to retain CS structures at higher temperatures better than shorter chains. In sufficiently disordered 2D systems, we demonstrate that there may exist a dominant conducting path (DCP) for conduction, which makes the 2D device behave as a quasi-1D device. The existence of a DCP is sensitive to the device structure, but is robust with respect to changes in temperature, gate bias, and VSD. A side gate in 1D and 2D systems can effectively control Vth. We argue that devices with smaller island sizes and narrower junctions may be better suited for practical applications, especially at room temperature.
Resumo:
The focus of the current dissertation is to study qualitatively the underlying physics of vortex-shedding and wake dynamics in long aspect-ratio aerodynamics in incompressible viscous flow through the use of the KLE method. We carried out a long series of numerical experiments in the cases of flow around the cylinder at low Reynolds numbers. The study of flow at low Reynolds numbers provides an insight in the fluid physics and also plays a critical role when applying to stalled turbine rotors. Many of the conclusions about the qualitative nature of the physical mechanisms characterizing vortex formation, shedding and further interaction analyzed here at low Re could be extended to other Re regimes and help to understand the separation of the boundary layers in airfoils and other aerodynamic surfaces. In the long run, it aims to provide a better understanding of the complex multi-physics problems involving fluid-structure-control interaction through improved mathematical computational models of the multi-physics process. Besides the scientific conclusions produced, the research work on streamlined and bluff-body condition will also serve as a valuable guide for the future design of blade aerodynamics and the placement of wind turbines and hydrakinetic turbines, increasing the efficiency in the use of expensive workforce, supplies, and infrastructure. After the introductory section describing the main fields of application of wind power and hydrokinetic turbines, we describe the main features and theoretical background of the numerical method used here. Then, we present the analysis of the numerical experimentation results for the oscillatory regime right before the onset of vortex shedding for circular cylinders. We verified the wake length of the closed near-wake behind the cylinder and analysed the decay of the wake at the wake formation region, and then studied the St-Re relationship at the Reynolds numbers before the wake sheds compared to the experimental data. We found a theoretical model that describes the time evolution of the amplitude of fluctuations in the vorticity field on the twin vortex wake, which accurately matches the numerical results in terms of the frequency of the oscillation and rate of decay. We also proposed a model based on an analog circuit that is able to interpret the concerning flow by reducing the number of degrees of freedom. It follows the idea of the non-linear oscillator and resembles the dynamics mechanism of the closed near-wake with a common configured sine wave oscillator. This low-dimensional circuital model may also help to understand the underlying physical mechanisms, related to vorticity transport, that give origin to those oscillations.
Resumo:
We observed Santiaguito volcano in southwestern Guatemala from March 2008 - March 2010. Seismic and infrasound data collected between January and March of 2009 contain records of many diverse processes occurring at the dacitic dome complex, including the recurrence of short lived (30-200 seconds in duration) harmonic tremor concurrent with ash poor gas emissions from the volcano. We employ several different analytical techniques to examine different portions of the tremor and source mechanisms. We use the parameters derived by this analysis to compare the feasibility of several suggested models of eruption mechanisms, and determine that this type of harmonic tremor is most justifiably generated by the flow of gas through crack networks generated by shear fracture along the magma conduit margin.
Resumo:
In recent times, the demand for the storage of electrical energy has grown rapidly for both static applications and the portable electronics enforcing the substantial improvement in battery systems, and Li-ion batteries have been proven to have maximum energy storage density in all rechargeable batteries. However, major breakthroughs are required to consummate the requirement of higher energy density with lower cost to penetrate new markets. Graphite anode having limited capacity has become a bottle neck in the process of developing next generation batteries and can be replaced by higher capacity metals such as Silicon. In the present study we are focusing on the mechanical behavior of the Si-thin film anode under various operating conditions. A numerical model is developed to simulate the intercalation induced stress and the failure mechanism of the complex anode structure. Effect of the various physical phenomena such as diffusion induced stress, plasticity and the crack propagation are investigated to predict better performance parameters for improved design.
Resumo:
The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.
Resumo:
One of two active volcanoes in the western branch of the East African Rift, Nyamuragira (1.408ºS, 29.20ºE; 3058 m) is located in the D.R. Congo. Nyamuragira emits large amounts of SO2 (up to ~1 Mt/day) and erupts low-silica, alkalic lavas, which achieve flow rates of up to ~20 km/hr. The source of the large SO2 emissions and pre-eruptive magma conditions were unknown prior to this study, and 1994-2010 lava volumes were only recently mapped via satellite imagery, mainly due to the region’s political instability. In this study, new olivine-hosted melt inclusion volatile (H2O, CO2, S, Cl, F) and major element data from five historic Nyamuragira eruptions (1912, 1938, 1948, 1986, 2006) are presented. Melt compositions derived from the 1986 and 2006 tephra samples best represent pre-eruptive volatile compositions because these samples contain naturally glassy inclusions that underwent less post-entrapment modification than crystallized inclusions. The total amount of SO2 released from the 1986 (0.04 Mt) and 2006 (0.06 Mt) eruptions are derived using the petrologic method, whereby S contents in melt inclusions are scaled to erupted lava volumes. These amounts are significantly less than satellite-based SO2 emissions for the same eruptions (1986 = ~1 Mt; 2006 = ~2 Mt). Potential explanations for this observation are: 1) accumulation of a vapor phase within the magmatic system that is only released during eruptions, and/or 2) syn-eruptive gas release from unerupted magma. Post-1994 Nyamuragira lava volumes were not available at the beginning of this study. These flows (along with others since 1967) are mapped with Landsat MSS, TM, and ETM+, Hyperion, and ALI satellite data and combined with published flow thicknesses to derive volumes. Satellite remote sensing data was also used to evaluate Nyamuragira SO2 emissions. These results show that the most recent Nyamuragira eruptions injected SO2 into the atmosphere between 15 km (2006 eruption) and 5 km (2010 eruption). This suggests that past effusive basaltic eruptions (e.g., Laki 1783) are capable of similar plume heights that reached the upper troposphere or tropopause, allowing SO2 and resultant aerosols to remain longer in the atmosphere, travel farther around the globe, and affect global climates.
Resumo:
Over the past several decades, it has become apparent that anthropogenic activities have resulted in the large-scale enhancement of the levels of many trace gases throughout the troposphere. More recently, attention has been given to the transport pathway taken by these emissions as they are dispersed throughout the atmosphere. The transport pathway determines the physical characteristics of emissions plumes and therefore plays an important role in the chemical transformations that can occur downwind of source regions. For example, the production of ozone (O3) is strongly dependent upon the transport its precursors undergo. O3 can initially be formed within air masses while still over polluted source regions. These polluted air masses can experience continued O3 production or O3 destruction downwind, depending on the air mass's chemical and transport characteristics. At present, however, there are a number of uncertainties in the relationships between transport and O3 production in the North Atlantic lower free troposphere. The first phase of the study presented here used measurements made at the Pico Mountain observatory and model simulations to determine transport pathways for US emissions to the observatory. The Pico Mountain observatory was established in the summer of 2001 in order to address the need to understand the relationships between transport and O3 production. Measurements from the observatory were analyzed in conjunction with model simulations from the Lagrangian particle dispersion model (LPDM), FLEX-PART, in order to determine the transport pathway for events observed at the Pico Mountain observatory during July 2003. A total of 16 events were observed, 4 of which were analyzed in detail. The transport time for these 16 events varied from 4.5 to 7 days, while the transport altitudes over the ocean ranged from 2-8 km, but were typically less than 3 km. In three of the case studies, eastward advection and transport in a weak warm conveyor belt (WCB) airflow was responsible for the export of North American emissions into the FT, while transport in the FT was governed by easterly winds driven by the Azores/Bermuda High (ABH) and transient northerly lows. In the fourth case study, North American emissions were lofted to 6-8 km in a WCB before being entrained in the same cyclone's dry airstream and transported down to the observatory. The results of this study show that the lower marine FT may provide an important transport environment where O3 production may continue, in contrast to transport in the marine boundary layer, where O3 destruction is believed to dominate. The second phase of the study presented here focused on improving the analysis methods that are available with LPDMs. While LPDMs are popular and useful for the analysis of atmospheric trace gas measurements, identifying the transport pathway of emissions from their source to a receptor (the Pico Mountain observatory in our case) using the standard gridded model output, particularly during complex meteorological scenarios can be difficult can be difficult or impossible. The transport study in phase 1 was limited to only 1 month out of more than 3 years of available data and included only 4 case studies out of the 16 events specifically due to this confounding factor. The second phase of this study addressed this difficulty by presenting a method to clearly and easily identify the pathway taken by only those emissions that arrive at a receptor at a particular time, by combining the standard gridded output from forward (i.e., concentrations) and backward (i.e., residence time) LPDM simulations, greatly simplifying similar analyses. The ability of the method to successfully determine the source-to-receptor pathway, restoring this Lagrangian information that is lost when the data are gridded, is proven by comparing the pathway determined from this method with the particle trajectories from both the forward and backward models. A sample analysis is also presented, demonstrating that this method is more accurate and easier to use than existing methods using standard LPDM products. Finally, we discuss potential future work that would be possible by combining the backward LPDM simulation with gridded data from other sources (e.g., chemical transport models) to obtain a Lagrangian sampling of the air that will eventually arrive at a receptor.