2 resultados para Physical and Theoretical Chemistry
em Digital Commons - Michigan Tech
Resumo:
Soil erosion is a natural geological phenomenon resulting from removal and transportation of soil particles by water, wind, ice and gravity. As soil erosion may be affected from cultural factors as well. The physical and social phenomena of soil erosion are researched in six communities in the upper part of Rio Grijalva Basin in the vicinity of Motozintla de Mendoza, Chiapas, Mexico. For this study, the USDA RUSLE model was applied to estimate soil erosion rates in the six communities based on the available data. The RUSLE model is based on soil properties, topography, and land cover and management factors. These results showed that estimated soil erosion rates ranged from a high of 2,050 metric ton ha-1 yr-1 to a low of 100 metric ton ha-1 yr-1. A survey concerning knowledge, attitudes and practices (KAP) related to soil erosion was also conducted in all 236 households in the six communities. The main findings of the KAP survey were: 69% of respondents did not know what soil erosion was, while over 40% of the population perceived that hurricanes are the biggest factors that cause soil erosion, and about 20 % of the interviewees said that the landslides are the consequences of the soil erosion. People in communities did not perceive cultural factors as important in conservation efforts for reduce vulnerability to erosion; therefore, the results obtained are suggested to be useful for informing efforts to educate stakeholders.
Resumo:
Emerging nanogenerators have attracted the attention of the research community, focusing on energy generation using piezoelectric nanomaterials. Nanogenerators can be utilized for powering NEMS/MEMS devices. Understanding the piezoelectric properties of ZnO one-dimensional materials such as ZnO nanobelts (NBs) and Nanowires (NWs) can have a significant impact on the design of new devices. The goal of this dissertation is to study the piezoelectric properties of one-dimensional ZnO nanostructures both experimentally and theoretically. First, the experimental procedure for producing the ZnO nanostructures is discussed. The produced ZnO nanostructures were characterized using an in-situ atomic force microscope and a piezoelectric force microscope. It is shown that the electrical conductivity of ZnO NBs is a function of applied mechanical force and its crystalline structure. This phenomenon was described in the context of formation of an electric field due to the piezoelectric property of ZnO NBs. In the PFM studies, it was shown that the piezoelectric response of the ZnO NBs depends on their production method and presence of defects in the NB. Second, a model was proposed for making nanocomposite electrical generators based on ZnO nanowires. The proposed model has advantages over the original configuration of nanogenerators which uses an AFM tip for bending the ZnO NWs. Higher stability of the electric source, capability for producing larger electric fields, and lower production costs are advantages of this configuration. Finally, piezoelectric properties of ZnO NBs were simulated using the molecular dynamics (MD) technique. The size-scale effect on piezoelectric properties of ZnO NBs was captured, and it is shown that the piezoelectric coefficient of ZnO NBs decreases by increasing their lateral dimensions. This phenomenon is attributed to the surface charge redistribution and compression of unit cells that are placed on the outer shell of ZnO NBs.