2 resultados para Phenotypic characterization,

em Digital Commons - Michigan Tech


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aspen (Populus tremuloides) trees growing under elevated [CO2] at a free-air CO2 enrichment (FACE) site have produced significantly more biomass compared to control trees. The molecular mechanisms underlying the observed increase in biomass productivity was investigated by producing transcriptomic profiles of the vascular cambium zone (VCZ) and leaves, followed by a comparative study to identify genes and pathways that showed significant changes following long-term exposure to elevated [CO2]. This study is mainly to verify if genetic modification of a few selected candidate genes including CAP1, CKX6, and ASML2 that are expressed in vascular cambium in response to elevated [CO2] can cause the changes in plant growth and development. To this end, these three genes were cloned into both sense and antisense constructs. Then antisense and sense transgenic lines of above-mentioned genes were developed. 15 events were generated for 5 constructs, which were confirmed with regular PCR and RT-PCR. Confirmed plants were planted in greenhouse for growth and phenotypic characterization. The expression of CAP1, CKX6 and ASML2 in antisense plants was measured by real-time RT-PCR, and the changes caused by gene interference in cambial growth were studies by analyzing the microscopic sections made from the antisense transgenic plants. It has been found that 1) CAP1 is mainly expressed in xylem and root. 2) RNAi suppression of CAP1 significantly affected height and diameter. 3) CAP1, ASML2 and CKX6 affected xylem and phloem cell proliferation and elongation. Due to the delay in regenerating sense transgenic plants, the characterization of sense transgenic plants is limited to growth only.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Caspases are known to be involved in animal programmed cell death (PCD). The objective of this thesis was to use gene expression analysis and reverse genetics to determine if Arabidopsis metacaspase (AtMC) genes play a role in plant PCD. The majority of AtMC genes were found to be expressed nearly constitutively in various tissues, developmental stages, and under various inductive treatments. Transgenic Arabidopsis plants generated with AtMCpromoter::AtMCgene::GUS fusions showed expression of the reporter gene in leaves, vasculature, trichomes, siliques, anthers, and during embryo development. Preliminary phenotypic characterization of single and double Arabidopsis AtMC loss-of-function mutants suggested that the expression of the AtMC genes are highly functionally redundant. Nevertheless, our results suggest that AtMC1, 2, 4, 6 and 9 may be directly involved in rosette and/or stem development. Although this study does not provide a definitive role of MCs in plant PCD, it lays the foundation for their further in-depth analysis.