2 resultados para Phase modulation
em Digital Commons - Michigan Tech
Resumo:
Hybrid MIMO Phased-Array Radar (HMPAR) is an emerging technology that combines MIMO (multiple-in, multiple-out) radar technology with phased-array radar technology. The new technology is in its infancy, but much of the theoretical work for this specific project has already been completed and is explored in great depth in [1]. A brief overview of phased-array radar systems, MIMO radar systems, and the HMPAR paradigm are explored in this paper. This report is the culmination of an effort to support research in MIMO and HMPAR utilizing a concept called intrapulse beamscan. Using intrapulse beamscan, arbitrary spatial coverage can be achieved within one MIMO beam pulse. Therefore, this report focuses on designing waveforms for MIMO radar systems with arbitrary spatial coverage using that phenomenon. With intrapulse beamscan, scanning is done through phase-modulated signal design within one pulse rather than phase-shifters in the phased array over multiple pulses. In addition to using this idea, continuous phase modulation (CPM) signals are considered for their desirable peak-to-average ratio property as well as their low spectral leakage. These MIMO waveforms are designed with three goals in mind. The first goal is to achieve flexible spatial coverage while utilizing intrapulse beamscan. As with almost any radar system, we wish to have flexibility in where we send our signal energy. The second goal is to maintain a peak-to-average ratio close to 1 on the envelope of these waveforms, ensuring a signal that is close to constant modulus. It is desired to have a radar system transmit at the highest available power; not doing so would further diminish the already very small return signals. The third goal is to ensure low spectral leakage using various techniques to limit the bandwidth of the designed signals. Spectral containment is important to avoid interference with systems that utilize nearby frequencies in the electromagnetic spectrum. These three goals are realized allowing for limitations of real radar systems. In addition to flexible spatial coverage, the report examines the spectral properties of utilizing various space-filling techniques for desired spatial areas. The space-filling techniques examined include Hilbert/Peano curves and standard raster scans.
Resumo:
Direct imaging of extra-solar planets in the visible and infrared region has generated great interest among scientists and the general public as well. However, this is a challenging problem. Diffculties of detecting a planet (faint source) are caused, mostly, by two factors: sidelobes caused by starlight diffraction from the edge of the pupil and the randomly scattered starlight caused by the phase errors from the imperfections in the optical system. While the latter diffculty can be corrected by high density active deformable mirrors with advanced phase sensing and control technology, the optimized strategy for suppressing the diffraction sidelobes is still an open question. In this thesis, I present a new approach to the sidelobe reduction problem: pupil phase apodization. It is based on a discovery that an anti-symmetric spatial phase modulation pattern imposed over a pupil or a relay plane causes diffracted starlight suppression sufficient for imaging of extra-solar planets. Numerical simulations with specific square pupil (side D) phase functions, such as ... demonstrate annulling in at least one quadrant of the diffraction plane to the contrast level of better than 10^12 with an inner working angle down to 3.5L/D (with a = 3 and e = 10^3). Furthermore, our computer experiments show that phase apodization remains effective throughout a broad spectrum (60% of the central wavelength) covering the entire visible light range. In addition to the specific phase functions that can yield deep sidelobe reduction on one quadrant, we also found that a modified Gerchberg-Saxton algorithm can help to find small sized (101 x 101 element) discrete phase functions if regional sidelobe reduction is desired. Our simulation shows that a 101x101 segmented but gapless active mirror can also generate a dark region with Inner Working Distance about 2.8L/D in one quadrant. Phase-only modulation has the additional appeal of potential implementation via active segmented or deformable mirrors, thereby combining compensation of random phase aberrations and diffraction halo removal in a single optical element.