3 resultados para Persistent deprivation
em Digital Commons - Michigan Tech
Resumo:
Recent epidemiological studies report a consistent association between short sleep and incidence of hypertension, as well as short sleep and cardiovascular disease-related mortality. While the association between short sleep and hypertension appears to be stronger in women than men, the mechanisms underlying the relations between sleep deprivation, stress, risks of cardiovascular diseases, and sex remain unclear. We conducted two studies to investigate the underlying neural mechanisms of these relations. In study 1, we examined sympathetic neural and blood pressure responses to experimentally-induced sleep deprivation in men and women. We further investigated the influence of sleep deprivation on cardiovascular reactivity to acute stress. In study 2, we examined the neural and cardiovascular function throughout the ovarian cycle in sleep deprived women. Twenty-eight young healthy subjects (14men and 14 women) were tested twice in study 1, once after normal sleep (NS) and once after 24-h total sleep deprivation (TSD). We measured the blood pressure, heart rate (HR), muscle sympathetic nerve activity (MSNA) and forearm blood flow (FBF) during 10min baseline, 5min of mental stress (MS) and 2 min cold pressor test (CPT). We demonstrated that TSD increased resting arterial blood pressure to a similar extent in both men and women, but MSNA decreased only in men following TSD. This MSNA response was associated with altered baroreflex function in women and divergent testosterone responses to TSD between men and women. Regarding TSD and cardiovascular reactivity, TSD elicited augmented HR reactivity and delayed recovery during both MS and CPT in men and women, and responses between sexes were not statistically different. Fourteen young healthy women participated in study 2. Subjects were tested twice, once during their early follicular (EF) phase after TSD, once during their mid-luteal (ML) phase after TSD. Blood pressure, HR, MSNA, and FBF were recorded during 10min baseline, 5 min MS, and 2 min CPT. We observed an augmented resting supine blood pressure during EF compared to ML in sleep deprived women. In contrast, resting MSNA, as well as cardiovascular responses to stressors, were similar between EF and ML after TSD. In conclusion, we observed sex differences in MSNA responses to TSD that demonstrate reductions of MSNA in men, but not women. TSD elicited augmented HR reactivity and delayed HR recovery to acute stressors similarly in men and women. We also reported an augmented supine blood pressure during EF compared to ML in sleep deprived women. These novel findings provide new and valuable mechanistic insight regarding the complex and poorly understood relations among sleep deprivation, sex, stress, and risk of cardiovascular disease.
Resumo:
Little or poor quality sleep is often reported in patients suffering from acute or chronic pain. Conversely, sleep loss has been known to elevate pain perception; thus a potential bi-direction relationship exists between sleep deprivation and pain. The effect of sleep deprivation on the thermal pain intensity has yet to be determined, furthermore, sex differences in pain have not been examined following sleep deprivation. There is also a higher prevalence of insomnia in women, and reports indicate that sleep quality is diminished and pain sensitivity may be greater during high hormone phases of the menstrual cycle. In Study 1 we examined the effects of 24-hour total sleep deprivation (TSD) on pain intensity during a 2-minute cold pressor test (CPT). We hypothesized that TSD would augment thermal pain intensity during CPT and women would demonstrate an elevated response compare to men. In Study 2 we investigated the effects of menstrual phase on pain intensity during CPT following TSD. We hypothesized that pain intensity would be augmented during the mid-luteal (ML) phase of the menstrual cycle. In Study 1, pain intensity was recorded during CPT in 14 men and 13 women after normal sleep (NS) and TSD. Pain intensity responses during CPT were elevated in both conditions; however, pain intensity was augmented (~ 1.2 a.u.) following TSD. When analyzed for sex differences, pain intensity was not different between men and women in either condition. In Study 2, pain intensity was recorded during CPT in 10 female subjects during the early follicular (EF) and ML phases of the menstrual cycle after TSD. Estradiol and progesterone levels were elevated during the ML phase, however, pain intensity was not different between the two phases. We conclude that TSD significantly augments pain intensity during CPT, but this response is not sex dependent. We further demonstrate that the collective effect of TSD and elevated gonadal hormone concentrations do not result in a differential pain response during the EF and ML phases of the menstrual cycle. Collectively, sleep loss augments pain intensity ratings in men and women and may contribute to sleep loss in painful conditions.
Resumo:
Measurement and modeling techniques were developed to improve over-water gaseous air-water exchange measurements for persistent bioaccumulative and toxic chemicals (PBTs). Analytical methods were applied to atmospheric measurements of hexachlorobenzene (HCB), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). Additionally, the sampling and analytical methods are well suited to study semivolatile organic compounds (SOCs) in air with applications related to secondary organic aerosol formation, urban, and indoor air quality. A novel gas-phase cleanup method is described for use with thermal desorption methods for analysis of atmospheric SOCs using multicapillary denuders. The cleanup selectively removed hydrogen-bonding chemicals from samples, including much of the background matrix of oxidized organic compounds in ambient air, and thereby improved precision and method detection limits for nonpolar analytes. A model is presented that predicts gas collection efficiency and particle collection artifact for SOCs in multicapillary denuders using polydimethylsiloxane (PDMS) sorbent. An approach is presented to estimate the equilibrium PDMS-gas partition coefficient (Kpdms) from an Abraham solvation parameter model for any SOC. A high flow rate (300 L min-1) multicapillary denuder was designed for measurement of trace atmospheric SOCs. Overall method precision and detection limits were determined using field duplicates and compared to the conventional high-volume sampler method. The high-flow denuder is an alternative to high-volume or passive samplers when separation of gas and particle-associated SOCs upstream of a filter and short sample collection time are advantageous. A Lagrangian internal boundary layer transport exchange (IBLTE) Model is described. The model predicts the near-surface variation in several quantities with fetch in coastal, offshore flow: 1) modification in potential temperature and gas mixing ratio, 2) surface fluxes of sensible heat, water vapor, and trace gases using the NOAA COARE Bulk Algorithm and Gas Transfer Model, 3) vertical gradients in potential temperature and mixing ratio. The model was applied to interpret micrometeorological measurements of air-water exchange flux of HCB and several PCB congeners in Lake Superior. The IBLTE Model can be applied to any scalar, including water vapor, carbon dioxide, dimethyl sulfide, and other scalar quantities of interest with respect to hydrology, climate, and ecosystem science.