2 resultados para Pebbles
em Digital Commons - Michigan Tech
Resumo:
Dolomite [CaMg(CO3)2] is an intolerable impurity in phosphate ores due to its MgO content. Traditionally, the Florida phosphate industry has avoided mining high-MgO phosphate reserves due to the lack of an economically viable process for removal of dolomite. However, as the high grade phosphate reserves become depleted, more emphasis is being put on the development of a cost effective method for separating dolomite from high-MgO phosphate ores. In general, the phosphate industry demands a phosphate concentrate containing less than 1%MgO. Dolomite impurities have mineralogical properties that are very similar to the desired phosphate minerals (francolite), making the separation of the two minerals very difficult. Magnesium is primarily found as distinct dolomite-rich pebbles, very fine dolomite inclusions in predominately francolite pebbles, and magnesium substituted into the francolite structure. Jigging is a gravity separation process that attempts to take advantage of the density difference between the dolomite and francolite pebbles. A unique laboratory scale jig was designed and built at Michigan Tech for this study. Through a series of tests it was found that a pulsation rate of 200 pulse/minute, a stroke length of 1 inch, a water addition rate of 0.5gpm, and alumina ragging balls were optimum for this study. To investigate the feasibility of jigging for the removal of dolomite from phosphate ore, two high-MgO phosphate ores were tested using optimized jigging parameters: (1) Plant #1 was sized to 4.00x0.85mm and contained 1.55%MgO; (2) Plant #2 was sized to 3.40mmx0.85mm and contained 3.07% MgO. A sample from each plant was visually separated by hand into dolomite and francolite rich fractions, which were then analyzed to determine the minimum achievable MgO levels. For Plant #1 phosphate ore, a concentrate containing 0.89%MgO was achieved at a recovery of 32.0%BPL. For Plant #2, a phosphate concentrate containing 1.38%MgO was achieved at a recovery of 74.7%BPL. Minimum achievable MgO levels were determined to be 0.53%MgO for Plant #1 and 1.15%MgO for Plant #2.
Resumo:
The Big Manistee River was one of the most well known Michigan rivers to historically support a population of Arctic grayling (Thymallus arctics). Overfishing, competition with introduced fish, and habitat loss due to logging are believed to have caused their decline and ultimate extirpation from the Big Manistee River around 1900 and from the State of Michigan by 1936. Grayling are a species of great cultural importance to Little River Band of Ottawa Indian tribal heritage and although past attempts to reintroduce Arctic grayling have been unsuccessful, a continued interest in their return led to the assessment of environmental conditions of tributaries within a 21 kilometer section of the Big Manistee River to determine if suitable habitat exists. Although data describing historical conditions in the Big Manistee River is limited, we reviewed the literature to determine abiotic conditions prior to Arctic grayling disappearance and the habitat conditions in rivers in western and northwestern North America where they currently exist. We assessed abiotic habitat metrics from 23 sites distributed across 8 tributaries within the Manistee River watershed. Data collected included basic water parameters, streambed substrate composition, channel profile and areal measurements of channel geomorphic unit, and stream velocity and discharge measurements. These environmental condition values were compared to literature values, habitat suitability thresholds, and current conditions of rivers with Arctic grayling populations to assess the feasibility of the abiotic habitat in Big Manistee River tributaries to support Arctic grayling. Although the historic grayling habitat in the region was disturbed during the era of major logging around the turn of the 20th century, our results indicate that some important abiotic conditions within Big Manistee River tributaries are within the range of conditions that support current and past populations of Arctic grayling. Seven tributaries contained between 20-30% pools by area, used by grayling for refuge. All but two tributaries were composed primarily of pebbles, with the remaining two dominated by fine substrates (sand, silt, clay). Basic water parameters and channel depth were within the ranges of those found for populations of Arctic grayling persisting in Montana, Alaska, and Canada for all tributaries. Based on the metrics analyzed in this study, suitable abiotic grayling habitat does exist in Big Manistee River tributaries.