4 resultados para Partial data fusion

em Digital Commons - Michigan Tech


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mobile sensor networks have unique advantages compared with wireless sensor networks. The mobility enables mobile sensors to flexibly reconfigure themselves to meet sensing requirements. In this dissertation, an adaptive sampling method for mobile sensor networks is presented. Based on the consideration of sensing resource constraints, computing abilities, and onboard energy limitations, the adaptive sampling method follows a down sampling scheme, which could reduce the total number of measurements, and lower sampling cost. Compressive sensing is a recently developed down sampling method, using a small number of randomly distributed measurements for signal reconstruction. However, original signals cannot be reconstructed using condensed measurements, as addressed by Shannon Sampling Theory. Measurements have to be processed under a sparse domain, and convex optimization methods should be applied to reconstruct original signals. Restricted isometry property would guarantee signals can be recovered with little information loss. While compressive sensing could effectively lower sampling cost, signal reconstruction is still a great research challenge. Compressive sensing always collects random measurements, whose information amount cannot be determined in prior. If each measurement is optimized as the most informative measurement, the reconstruction performance can perform much better. Based on the above consideration, this dissertation is focusing on an adaptive sampling approach, which could find the most informative measurements in unknown environments and reconstruct original signals. With mobile sensors, measurements are collect sequentially, giving the chance to uniquely optimize each of them. When mobile sensors are about to collect a new measurement from the surrounding environments, existing information is shared among networked sensors so that each sensor would have a global view of the entire environment. Shared information is analyzed under Haar Wavelet domain, under which most nature signals appear sparse, to infer a model of the environments. The most informative measurements can be determined by optimizing model parameters. As a result, all the measurements collected by the mobile sensor network are the most informative measurements given existing information, and a perfect reconstruction would be expected. To present the adaptive sampling method, a series of research issues will be addressed, including measurement evaluation and collection, mobile network establishment, data fusion, sensor motion, signal reconstruction, etc. Two dimensional scalar field will be reconstructed using the method proposed. Both single mobile sensors and mobile sensor networks will be deployed in the environment, and reconstruction performance of both will be compared.In addition, a particular mobile sensor, a quadrotor UAV is developed, so that the adaptive sampling method can be used in three dimensional scenarios.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study will look at the passenger air bag (PAB) performance in a fix vehicle environment using Partial Low Risk Deployment (PLRD) as a strategy. This development will follow test methods against actual baseline vehicle data and Federal Motor Vehicle Safety Standards 208 (FMVSS 208). FMVSS 208 states that PAB compliance in vehicle crash testing can be met using one of three deployment methods. The primary method suppresses PAB deployment, with the use of a seat weight sensor or occupant classification sensor (OCS), for three-year old and six-year old occupants including the presence of a child seat. A second method, PLRD allows deployment on all size occupants suppressing only for the presents of a child seat. A third method is Low Risk Deployment (LRD) which allows PAB deployment in all conditions, all statures including any/all child seats. This study outlines a PLRD development solution for achieving FMVSS 208 performance. The results of this study should provide an option for system implementation including opportunities for system efficiency and other considerations. The objective is to achieve performance levels similar too or incrementally better than the baseline vehicles National Crash Assessment Program (NCAP) Star rating. In addition, to define systemic flexibility where restraint features can be added or removed while improving occupant performance consistency to the baseline. A certified vehicles’ air bag system will typically remain in production until the vehicle platform is redesigned. The strategy to enable the PLRD hypothesis will be to first match the baseline out of position occupant performance (OOP) for the three and six-year old requirements. Second, improve the 35mph belted 5th percentile female NCAP star rating over the baseline vehicle. Third establish an equivalent FMVSS 208 certification for the 25mph unbelted 50th percentile male. FMVSS 208 high-speed requirement defines the federal minimum crash performance required for meeting frontal vehicle crash-test compliance. The intent of NCAP 5-Star rating is to provide the consumer with information about crash protection, beyond what is required by federal law. In this study, two vehicles segments were used for testing to compare and contrast to their baseline vehicles performance. Case Study 1 (CS1) used a cross over vehicle platform and Case Study 2 (CS2) used a small vehicle segment platform as their baselines. In each case study, the restraints systems were from different restraint supplier manufactures and each case contained that suppliers approach to PLRD. CS1 incorporated a downsized twins shaped bag, a carryover inflator, standard vents, and a strategic positioned bag diffuser to help disperse the flow of gas to improve OOP. The twin shaped bag with two segregated sections (lobes) to enabled high-speed baseline performance correlation on the HYGE Sled. CS2 used an A-Symmetric (square shape) PAB with standard size vents, including a passive vent, to obtain OOP similar to the baseline. The A-Symmetric shape bag also helped to enabled high-speed baseline performance improvements in HYGE Sled testing in CS2. The anticipated CS1 baseline vehicle-pulse-index (VPI) target was in the range of 65-67. However, actual dynamic vehicle (barrier) testing was overshadowed with the highest crash pulse from the previous tested vehicles with a VPI of 71. The result from the 35mph NCAP Barrier test was a solid 4-Star (4.7 Star) respectfully. In CS2, the vehicle HYGE Sled development VPI range, from the baseline was 61-62 respectively. Actual NCAP test produced a chest deflection result of 26mm versus the anticipated baseline target of 12mm. The initial assessment of this condition was thought to be due to the vehicles significant VPI increase to 67. A subsequent root cause investigation confirmed a data integrity issue due to the instrumentation. In an effort to establish a true vehicle test data point a second NCAP test was performed but faced similar instrumentation issues. As a result, the chest deflect hit the target of 12.1mm; however a femur load spike, similar to the baseline, now skewed the results. With noted level of performance improvement in chest deflection, the NCAP star was assessed as directional for 5-Star capable performance. With an actual rating of 3-Star due to instrumentation, using data extrapolation raised the ratings to 5-Star. In both cases, no structural changes were made to the surrogate vehicle and the results in each case matched their perspective baseline vehicle platforms. These results proved the PLRD is viable for further development and production implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Crosswell data set contains a range of angles limited only by the geometry of the source and receiver configuration, the separation of the boreholes and the depth to the target. However, the wide angles reflections present in crosswell imaging result in amplitude-versus-angle (AVA) features not usually observed in surface data. These features include reflections from angles that are near critical and beyond critical for many of the interfaces; some of these reflections are visible only for a small range of angles, presumably near their critical angle. High-resolution crosswell seismic surveys were conducted over a Silurian (Niagaran) reef at two fields in northern Michigan, Springdale and Coldspring. The Springdale wells extended to much greater depths than the reef, and imaging was conducted from above and from beneath the reef. Combining the results from images obtained from above with those from beneath provides additional information, by exhibiting ranges of angles that are different for the two images, especially for reflectors at shallow depths, and second, by providing additional constraints on the solutions for Zoeppritz equations. Inversion of seismic data for impedance has become a standard part of the workflow for quantitative reservoir characterization. Inversion of crosswell data using either deterministic or geostatistical methods can lead to poor results with phase change beyond the critical angle, however, the simultaneous pre-stack inversion of partial angle stacks may be best conducted with restrictions to angles less than critical. Deterministic inversion is designed to yield only a single model of elastic properties (best-fit), while the geostatistical inversion produces multiple models (realizations) of elastic properties, lithology and reservoir properties. Geostatistical inversion produces results with far more detail than deterministic inversion. The magnitude of difference in details between both types of inversion becomes increasingly pronounced for thinner reservoirs, particularly those beyond the vertical resolution of the seismic. For any interface imaged from above and from beneath, the results AVA characters must result from identical contrasts in elastic properties in the two sets of images, albeit in reverse order. An inversion approach to handle both datasets simultaneously, at pre-critical angles, is demonstrated in this work. The main exploration problem for carbonate reefs is determining the porosity distribution. Images of elastic properties, obtained from deterministic and geostatistical simultaneous inversion of a high-resolution crosswell seismic survey were used to obtain the internal structure and reservoir properties (porosity) of Niagaran Michigan reef. The images obtained are the best of any Niagaran pinnacle reef to date.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A camera maps 3-dimensional (3D) world space to a 2-dimensional (2D) image space. In the process it loses the depth information, i.e., the distance from the camera focal point to the imaged objects. It is impossible to recover this information from a single image. However, by using two or more images from different viewing angles this information can be recovered, which in turn can be used to obtain the pose (position and orientation) of the camera. Using this pose, a 3D reconstruction of imaged objects in the world can be computed. Numerous algorithms have been proposed and implemented to solve the above problem; these algorithms are commonly called Structure from Motion (SfM). State-of-the-art SfM techniques have been shown to give promising results. However, unlike a Global Positioning System (GPS) or an Inertial Measurement Unit (IMU) which directly give the position and orientation respectively, the camera system estimates it after implementing SfM as mentioned above. This makes the pose obtained from a camera highly sensitive to the images captured and other effects, such as low lighting conditions, poor focus or improper viewing angles. In some applications, for example, an Unmanned Aerial Vehicle (UAV) inspecting a bridge or a robot mapping an environment using Simultaneous Localization and Mapping (SLAM), it is often difficult to capture images with ideal conditions. This report examines the use of SfM methods in such applications and the role of combining multiple sensors, viz., sensor fusion, to achieve more accurate and usable position and reconstruction information. This project investigates the role of sensor fusion in accurately estimating the pose of a camera for the application of 3D reconstruction of a scene. The first set of experiments is conducted in a motion capture room. These results are assumed as ground truth in order to evaluate the strengths and weaknesses of each sensor and to map their coordinate systems. Then a number of scenarios are targeted where SfM fails. The pose estimates obtained from SfM are replaced by those obtained from other sensors and the 3D reconstruction is completed. Quantitative and qualitative comparisons are made between the 3D reconstruction obtained by using only a camera versus that obtained by using the camera along with a LIDAR and/or an IMU. Additionally, the project also works towards the performance issue faced while handling large data sets of high-resolution images by implementing the system on the Superior high performance computing cluster at Michigan Technological University.