4 resultados para Pampean West

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The prevalence of Ventilated Improved Pit (VIP) latrines in Ghana suggests that the design must have a high user acceptance. The two key factors attributed to user acceptance of a VIP latrine over an alternative latrine design, such as the basic pit latrine, are its ability to remove foul odors and maintain low fly populations; both of which are a direct result of an adequate ventilation flow rate. Adequate ventilation for odorless conditions in a VIP latrine has been defined by the United Nations Development Program (UNDP) and the World Bank, as an air flow rate equivalent to 6 air changes per hour (6 ACH) of the superstructure’s air volume. Additionally, the UNDP determined that the three primary factors that affect ventilation are: 1) wind passing over the mouth of the vent pipe, 2) wind passing into the superstructure, and 3) solar radiation on to the vent pipe. Previous studies also indicate that vent pipes with larger diameters increase flow rates, and the application of carbonaceous materials to the pit sludge reduces odor and insect prevalence. Furthermore, proper design and construction is critical for the correct functioning of VIP latrines. Under-designing could cause problems with odor and insect control; over-designing would increase costs unnecessarily, thereby making it potentially unaffordable for benefactors to independently construct, repair or replace a VIP latrine. The present study evaluated the design of VIP latrines used by rural communities in the Upper West Region of Ghana with the focus of assessing adequate ventilation for odor removal and insect control. Thirty VIP latrines from six communities in the Upper West Region of Ghana were sampled. Each VIP latrine’s ventilation flow rate and micro-environment was measured using a hot-wire anemometer probe and portable weather station for a minimum of four hours. To capture any temporal or seasonal variations in ventilation, ten of the latrines were sampled monthly over the course of three months for a minimum of 12 hours. A latrine usage survey and a cost analysis were also conducted to further assess the VIP latrine as an appropriated technology for sustainable development in the Upper West Region. It was found that the average air flow rate over the entire sample set was 11.3 m3/hr. The minimum and maximum air flow rates were 0.0 m3/hr and 48.0 m3/hr respectively. Only 1 of the 30 VIP latrines (3%) was found to have an air flow rate greater than the UNDP-defined odorless condition of 6 ACH. Furthermore, 19 VIP latrines (63%) were found to have an average air flow rate of less than half the flow rate required to achieve 6 ACH. The dominant factors affecting ventilation flow rate were wind passing over the mouth of the vent pipe and air buoyancy forces, which were the effect of differences in temperature between the substructure and the ambient environment. Of 76 usable VIP latrines found in one community, 68.4% were in actual use. The cost of a VIP latrine was found to be equivalent to approximately 12% of the mean annual household income for Upper West Region inhabitants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As water quality interventions are scaled up to meet the Millennium Development Goal of halving the proportion of the population without access to safe drinking water by 2015 there has been much discussion on the merits of household- and source-level interventions. This study furthers the discussion by examining specific interventions through the use of embodied human and material energy. Embodied energy quantifies the total energy required to produce and use an intervention, including all upstream energy transactions. This model uses material quantities and prices to calculate embodied energy using national economic input/output-based models from China, the United States and Mali. Embodied energy is a measure of aggregate environmental impacts of the interventions. Human energy quantifies the caloric expenditure associated with the installation and operation of an intervention is calculated using the physical activity ratios (PARs) and basal metabolic rates (BMRs). Human energy is a measure of aggregate social impacts of an intervention. A total of four household treatment interventions – biosand filtration, chlorination, ceramic filtration and boiling – and four water source-level interventions – an improved well, a rope pump, a hand pump and a solar pump – are evaluated in the context of Mali, West Africa. Source-level interventions slightly out-perform household-level interventions in terms of having less total embodied energy. Human energy, typically assumed to be a negligible portion of total embodied energy, is shown to be significant to all eight interventions, and contributing over half of total embodied energy in four of the interventions. Traditional gender roles in Mali dictate the types of work performed by men and women. When the human energy is disaggregated by gender, it is seen that women perform over 99% of the work associated with seven of the eight interventions. This has profound implications for gender equality in the context of water quality interventions, and may justify investment in interventions that reduce human energy burdens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ensuring water is safe at source and point-of-use is important in areas of the world where drinking water is collected from communal supplies. This report describes a study in rural Mali to determine the appropriateness of assumptions common among development organizations that drinking water will remain safe at point-of-use if collected from a safe (improved) source. Water was collected from ten sources (borehole wells with hand pumps, and hand-dug wells) and forty-five households using water from each source type. Water quality was evaluated seasonally (quarterly) for levels of total coliform, E.coli, and turbidity. Microbial testing was done using the 3M Petrifilm™ method. Turbidity testing was done using a turbidity tube. Microbial testing results were analyzed using statistical tests including Kruskal-Wallis, Mann Whitney, and analysis of variance. Results show that water from hand pumps did not contain total coliform or E.coli and had turbidity under 5 NTUs, whereas water from dug wells had high levels of bacteria and turbidity. However water at point-of-use (household) from hand pumps showed microbial contamination - at times being indistinguishable from households using dug wells - indicating a decline in water quality from source to point-of-use. Chemical treatment at point-of-use is suggested as an appropriate solution to eliminating any post-source contamination. Additionally, it is recommended that future work be done to modify existing water development strategies to consider water quality at point-of-use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agroforestry parklands represent a vast majority of the agricultural landscape under subsistent-oriented farming in semi-arid West Africa. Parklands are characterized by the growth of well- maintained trees (e.g., shea) on cultivated fields as a result of both environmental and human influences. Shea (Vitellaria paradoxa) provides a cultural and economic benefit to the local people of Ghana, especially women. Periods between traditional fallow rotation systems have reduced recently due to agricultural development and a demand for higher production. As a result, shea trees, which regenerate during fallow periods, has decreased over the landscape. The aim of this study was to determine beneficial spatial distributions of V. paradoxa to maintain high yields of staple crops, and how management of V. paradoxa will differ between male and female farmers as a result of farmer based needs and use of shea. Vegetation growth and grain yield of maize (Zea mays) associated with individual trees, clumped trees, and open fields were measured. Soil moisture and light availability were also measured to determine how V. paradoxa affected resource availability of maize in either clumped or scattered distributions of V. paradoxa. As expected, light availability increased as measurement locations moved farther away from all trees. However, soil moisture was actually greater under trees in clumps than under individual trees. Maize stalk height and cob length showed no difference between clumped and single trees at each measurement location. Grain yield per plot and per cob increased as measurement locations moved farther from single trees, but was actually greater near clumped trees that in the open field subplots. Cob length and maize stalk height increased with greater light availability, but grain yield per cob or per plot showed no relationship with light, but were not affected by soil moisture. Conversely, grain yield increased with increasing soil moisture, but had no relationship with light availability. Initial farming capital is the largest constraint to female farmers; therefore the collection of shea can help provide women with added income that could meet their specific farming needs. Our data indicate that overall effects of maintaining clumped distributions of V. paradoxa provided beneficial microclimates for staple crops when compared to single trees. It is recommended that male and female farmers allow shea to grow in clumped spatial distributions rather than maintaining scattered, individual trees.