2 resultados para Packet-forwarding scheme
em Digital Commons - Michigan Tech
Resumo:
KIVA is a FORTRAN code developed by Los Alamos national lab to simulate complete engine cycle. KIVA is a flow solver code which is used to perform calculation of properties in a fluid flow field. It involves using various numerical schemes and methods to solve the Navier-Stokes equation. This project involves improving the accuracy of one such scheme by upgrading it to a higher order scheme. The numerical scheme to be modified is used in the critical final stage calculation called as rezoning phase. The primitive objective of this project is to implement a higher order numerical scheme, to validate and verify that the new scheme is better than the existing scheme. The latest version of the KIVA family (KIVA 4) is used for implementing the higher order scheme to support handling the unstructured mesh. The code is validated using the traditional shock tube problem and the results are verified to be more accurate than the existing schemes in reference with the analytical result. The convection test is performed to compare the computational accuracy on convective transfer; it is found that the new scheme has less numerical diffusion compared to the existing schemes. A four valve pentroof engine, an example case of KIVA package is used as application to ensure the stability of the scheme in practical application. The results are compared for the temperature profile. In spite of all the positive results, the numerical scheme implemented has a downside of consuming more CPU time for the computational analysis. The detailed comparison is provided. However, in an overview, the implementation of the higher order scheme in the latest code KIVA 4 is verified to be successful and it gives better results than the existing scheme which satisfies the objective of this project.
Resumo:
With wireless vehicular communications, Vehicular Ad Hoc Networks (VANETs) enable numerous applications to enhance traffic safety, traffic efficiency, and driving experience. However, VANETs also impose severe security and privacy challenges which need to be thoroughly investigated. In this dissertation, we enhance the security, privacy, and applications of VANETs, by 1) designing application-driven security and privacy solutions for VANETs, and 2) designing appealing VANET applications with proper security and privacy assurance. First, the security and privacy challenges of VANETs with most application significance are identified and thoroughly investigated. With both theoretical novelty and realistic considerations, these security and privacy schemes are especially appealing to VANETs. Specifically, multi-hop communications in VANETs suffer from packet dropping, packet tampering, and communication failures which have not been satisfyingly tackled in literature. Thus, a lightweight reliable and faithful data packet relaying framework (LEAPER) is proposed to ensure reliable and trustworthy multi-hop communications by enhancing the cooperation of neighboring nodes. Message verification, including both content and signature verification, generally is computation-extensive and incurs severe scalability issues to each node. The resource-aware message verification (RAMV) scheme is proposed to ensure resource-aware, secure, and application-friendly message verification in VANETs. On the other hand, to make VANETs acceptable to the privacy-sensitive users, the identity and location privacy of each node should be properly protected. To this end, a joint privacy and reputation assurance (JPRA) scheme is proposed to synergistically support privacy protection and reputation management by reconciling their inherent conflicting requirements. Besides, the privacy implications of short-time certificates are thoroughly investigated in a short-time certificates-based privacy protection (STCP2) scheme, to make privacy protection in VANETs feasible with short-time certificates. Secondly, three novel solutions, namely VANET-based ambient ad dissemination (VAAD), general-purpose automatic survey (GPAS), and VehicleView, are proposed to support the appealing value-added applications based on VANETs. These solutions all follow practical application models, and an incentive-centered architecture is proposed for each solution to balance the conflicting requirements of the involved entities. Besides, the critical security and privacy challenges of these applications are investigated and addressed with novel solutions. Thus, with proper security and privacy assurance, these solutions show great application significance and economic potentials to VANETs. Thus, by enhancing the security, privacy, and applications of VANETs, this dissertation fills the gap between the existing theoretic research and the realistic implementation of VANETs, facilitating the realistic deployment of VANETs.