12 resultados para PROPULSION

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This research investigated annular field reversed configuration (AFRC)devices for high power electric propulsion by demonstrating the acceleration of these plasmoids using an experimental prototype and measuring the plasmoid's velocity, impulse, and energy efficiency. The AFRC plasmoid translation experiment was design and constructed with the aid of a dynamic circuit model. Two versions of the experiment were built, using underdamped RLC circuits at 10 kHz and 20 kHz. Input energies were varied from 100 J/pulse to 1000 J/pulse for the 10 kHz bank and 100 J/pulse for the 20 kHz bank. The plasmoids were formed in static gas fill of argon, from 1 mTorr to 50 mTorr. The translation of the plasmoid was accomplished by incorporating a small taper into the outer coil, with a half angle of 2°. Magnetic field diagnostics, plasma probes, and single-frame imaging were used to measure the plasmoid's velocity and to diagnose plasmoid behavior. Full details of the device design, construction, and diagnostics are provided in this dissertation. The results from the experiment demonstrated that a repeatable AFRC plasmoid was produced between the coils, yet failed to translate for all tested conditions. The data revealed the plasmoid was limited in lifetime to only a few (4-10) μs, too short for translation at low energy. A global stability study showed that the plasma suffered a radial collapse onto the inner wall early in its lifecycle. The radial collapse was traced to a magnetic pressure imbalance. A correction made to the circuit was successful in restoring an equilibrium pressure balance and prolonging radial stability by an additional 2.5 μs. The equilibrium state was sufficient to confirm that the plasmoid current in an AFRC reaches a steady-state prior to the peak of the coil currents. This implies that the plasmoid will always be driven to the inner wall, unless it translates from the coils prior to peak coil currents. However, ejection of the plasmoid before the peak coil currents results in severe efficiency losses. These results demonstrate the difficulty in designing an AFRC experiment for translation as balancing the different requirements for stability, balance, and efficient translation can have competing consequences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Hall thruster, an E × B device used for in-space propulsion, utilizes an axial electric field to electrostatically accelerate plasma propellant from the spacecraft. The axial electric field is created by positively biasing the anode so that the positivelycharged ions may be accelerated (repelled) from the thruster, which produces thrust. However, plasma electrons are much smaller than ions and may be accelerated much more quickly toward the anode; if electrons were not impeded, a "short circuit" due to the electron flow would eliminate the thrust mechanism. Therefore, a magnetic field serves to "magnetize" plasma electrons internal to the thruster and confines them in gyro-orbits within the discharge channel. Without outside factors electrons would be confined indefinitely; however, electron-neutral collisions provide a mechanism to free electrons from their orbits allowing electrons to cross the magnetic field toward the anode, where this process is described by classical transport theory. To make matters worse, cross-field electron transport has been observed to be 100-1000 times that predicted by classical collisional theory, providing an efficiency loss mechanism and an obstacle for modeling and simulations in Hall thrusters. The main difficulty in studying electron transport in Hall thrusters is the coupling that exists between the plasma and the fields, where the plasma creates and yet is influenced by the electric field. A device has been constructed at MTU’s Isp Lab, the Hall Electron Mobility Gage, which was designed specifically to study electron transport in E × B devices, where the coupling between the plasma and electric field was virtually eliminated. In this device the two most cited contributors to electron transport in Hall thrusters, fluctuation-induced transport, and wall effects, were absent. Removing the dielectric walls and plasma fluctuations, while maintaining the field environment in vacuum, has allowed the study of electron dynamics in Hall thruster fields where the electrons behave as test particles in prescribed fields, greatly simplifying the environment. Therefore, it was possible to observe any effects on transport not linked to the cited mechanisms, and it was possible to observe trends of the enhanced mobility with control parameters of electric and magnetic fields and neutral density– parameters that are not independently variable in a Hall thruster. The result of the investigation was the observation of electron transport that was ~ 20-100 times the classical prediction. The cross-field electron transport in the Mobility Gage was generally lower than that found in a Hall thruster so these findings do not negate the possibility of fluctuations and/or wall collisions contributing to transport in a Hall thruster. However, this research led to the observation of enhanced cross-field transport that had not been previously isolated in Hall thruster fields, which is not reliant on momentum-transfer collisions, wall collisions or fluctuations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system. With energy demands and costs growing every day, the need for improving energy efficiency in electrical devices has become very important. Research into various methods of improving efficiency for all electrical components will be a key to meet future energy needs. This report documents the design, construction, and testing of a research quality electric machine dynamometer and test bed. This test cell system can be used for research in several areas including: electric drives systems, electric vehicle propulsion systems, power electronic converters, load/source element in an AC Microgrid, as well as many others. The test cell design criteria, and decisions, will be discussed in reference to user functionality and flexibility. The individual power components will be discussed in detail to how they relate to the project, highlighting any feature used in operation of the test cell. A project timeline will be discussed, clearly stating the work done by the different individuals involved in the project. In addition, the system will be parameterized and benchmark data will be used to provide the functional operation of the system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intent of the work presented in this thesis is to show that relativistic perturbations should be considered in the same manner as well known perturbations currently taken into account in planet-satellite systems. It is also the aim of this research to show that relativistic perturbations are comparable to standard perturbations in speciffc force magnitude and effects. This work would have been regarded as little more then a curiosity to most engineers until recent advancements in space propulsion methods { e.g. the creation of a artiffcial neutron stars, light sails, and continuous propulsion techniques. These cutting-edge technologies have the potential to thrust the human race into interstellar, and hopefully intergalactic, travel in the not so distant future. The relativistic perturbations were simulated on two orbit cases: (1) a general orbit and (2) a Molniya type orbit. The simulations were completed using Matlab's ODE45 integration scheme. The methods used to organize, execute, and analyze these simulations are explained in detail. The results of the simulations are presented in graphical and statistical form. The simulation data reveals that the speciffc forces that arise from the relativistic perturbations do manifest as variations in the classical orbital elements. It is also apparent from the simulated data that the speciffc forces do exhibit similar magnitudes and effects that materialize from commonly considered perturbations that are used in trajectory design, optimization, and maintenance. Due to the similarities in behavior of relativistic versus non-relativistic perturbations, a case is made for the development of a fully relativistic formulation for the trajectory design and trajectory optimization problems. This new framework would afford the possibility of illuminating new more optimal solutions to the aforementioned problems that do not arise in current formulations. This type of reformulation has already showed promise when the previously unknown Space Superhighways arose as a optimal solution when classical astrodynamics was reformulated using geometric mechanics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hall-effect thrusters (HETs) are compact electric propulsion devices with high specific impulse used for a variety of space propulsion applications. HET technology is well developed but the electron properties in the discharge are not completely understood, mainly due to the difficulty involved in performing accurate measurements in the discharge. Measurements of electron temperature and density have been performed using electrostatic probes, but presence of the probes can significantly disrupt thruster operation, and thus alter the electron temperature and density. While fast-probe studies have expanded understanding of HET discharges, a non-invasive method of measuring the electron temperature and density in the plasma is highly desirable. An alternative to electrostatic probes is a non-perturbing laser diagnostic technique that measures Thomson scattering from the plasma. Thomson scattering is the process by which photons are elastically scattered from the free electrons in a plasma. Since the electrons have thermal energy their motion causes a Doppler shift in the scattered photons that is proportional to their velocity. Like electrostatic probes, laser Thomson scattering (LTS) can be used to determine the temperature and density of free electrons in the plasma. Since Thomson scattering measures the electron velocity distribution function directly no assumptions of the plasma conditions are required, allowing accurate measurements in anisotropic and non-Maxwellian plasmas. LTS requires a complicated measurement apparatus, but has the potential to provide accurate, non-perturbing measurements of electron temperature and density in HET discharges. In order to assess the feasibility of LTS diagnostics on HETs non-invasive measurements of electron temperature and density in the near-field plume of a Hall thruster were performed using a custom built laser Thomson scattering diagnostic. Laser measurements were processed using a maximum likelihood estimation method and results were compared to conventional electrostatic double probe measurements performed at the same thruster conditions. Electron temperature was found to range from approximately 1 – 40 eV and density ranged from approximately 1.0 x 1017 m-3 to 1.3 x 1018 m-3 over discharge voltages from 250 to 450 V and mass flow rates of 40 to 80 SCCM using xenon propellant.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, the use of magnesium as a Hall thruster propellant was evaluated. A xenon Hall thruster was modified such that magnesium propellant could be loaded into the anode and use waste heat from the thruster discharge to drive the propellant vaporization. A control scheme was developed, which allowed for precise control of the mass flow rate while still using plasma heating as the main mechanism for evaporation. The thruster anode, which also served as the propellant reservoir, was designed such that the open area was too low for sufficient vapor flow at normal operating temperatures (i.e. plasma heating alone). The remaining heat needed to achieve enough vapor flow to sustain thruster discharge came from a counter-wound resistive heater located behind the anode. The control system has the ability to arrest thermal runaway in a direct evaporation feed system and stabilize the discharge current during voltage-limited operation. A proportional-integral-derivative control algorithm was implemented to enable automated operation of the mass flow control system using the discharge current as the measured variable and the anode heater current as the controlled parameter. Steady-state operation at constant voltage with discharge current excursions less than 0.35 A was demonstrated for 70 min. Using this long-duration method, stable operation was achieved with heater powers as low as 6% of the total discharge power. Using the thermal mass flow control system the thruster operated stably enough and long enough that performance measurements could be obtained and compared to the performance of the thruster using xenon propellant. It was found that when operated with magnesium, the thruster has thrust ranging from 34 mN at 200 V to 39 mN at 300 V with 1.7 mg/s of propellant. It was found to have 27 mN of thrust at 300 V using 1.0 mg/s of propellant. The thrust-to-power ratio ranged from 24 mN/kW at 200 V to 18 mN/kW at 300 volts. The specific impulse was 2000 s at 200 V and upwards of 2700 s at 300 V. The anode efficiency was found to be ~23% using magnesium, which is substantially lower than the 40% anode efficiency of xenon at approximately equivalent molar flow rates. Measurements in the plasma plume of the thruster—operated using magnesium and xenon propellants—were obtained using a Faraday probe to measure off-axis current distribution, a retarding potential analyzer to measure ion energy, and a double Langmuir probe to measure plasma density, electron temperature, and plasma potential. Additionally, the off axis current distributions and ion energy distributions were compared to measurements made in krypton and bismuth plasmas obtained in previous studies of the same thruster. Comparisons showed that magnesium had the largest beam divergence of the four propellants while the others had similar divergence. The comparisons also showed that magnesium and krypton both had very low voltage utilization compared to xenon and bismuth. It is likely that the differences in plume structure are due to the atomic differences between the propellants; the ionization mean free path goes down with increasing atomic mass. Magnesium and krypton have long ionization mean free paths and therefore require physically larger thruster dimensions for efficient thruster operation and would benefit from magnetic shielding.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With the insatiable curiosity of human beings to explore the universe and our solar system, it is essential to benefit from larger propulsion capabilities to execute efficient transfers and carry more scientific equipment. In the field of space trajectory optimization the fundamental advances in using low-thrust propulsion and exploiting the multi-body dynamics has played pivotal role in designing efficient space mission trajectories. The former provides larger cumulative momentum change in comparison with the conventional chemical propulsion whereas the latter results in almost ballistic trajectories with negligible amount of propellant. However, the problem of space trajectory design translates into an optimal control problem which is, in general, time-consuming and very difficult to solve. Therefore, the goal of the thesis is to address the above problem by developing a methodology to simplify and facilitate the process of finding initial low-thrust trajectories in both two-body and multi-body environments. This initial solution will not only provide mission designers with a better understanding of the problem and solution but also serves as a good initial guess for high-fidelity optimal control solvers and increases their convergence rate. Almost all of the high-fidelity solvers enjoy the existence of an initial guess that already satisfies the equations of motion and some of the most important constraints. Despite the nonlinear nature of the problem, it is sought to find a robust technique for a wide range of typical low-thrust transfers with reduced computational intensity. Another important aspect of our developed methodology is the representation of low-thrust trajectories by Fourier series with which the number of design variables reduces significantly. Emphasis is given on simplifying the equations of motion to the possible extent and avoid approximating the controls. These facts contribute to speeding up the solution finding procedure. Several example applications of two and three-dimensional two-body low-thrust transfers are considered. In addition, in the multi-body dynamic, and in particular the restricted-three-body dynamic, several Earth-to-Moon low-thrust transfers are investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Volcán Pacaya is one of three currently active volcanoes in Guatemala. Volcanic activity originates from the local tectonic subduction of the Cocos plate beneath the Caribbean plate along the Pacific Guatemalan coast. Pacaya is characterized by generally strombolian type activity with occasional larger vulcanian type eruptions approximately every ten years. One particularly large eruption occurred on May 27, 2010. Using GPS data collected for approximately 8 years before this eruption and data from an additional three years of collection afterwards, surface movement covering the period of the eruption can be measured and used as a tool to help understand activity at the volcano. Initial positions were obtained from raw data using the Automatic Precise Positioning Service provided by the NASA Jet Propulsion Laboratory. Forward modeling of observed 3-D displacements for three time periods (before, covering and after the May 2010 eruption) revealed that a plausible source for deformation is related to a vertical dike or planar surface trending NNW-SSE through the cone. For three distinct time periods the best fitting models describe deformation of the volcano: 0.45 right lateral movement and 0.55 m tensile opening along the dike mentioned above from October 2001 through January 2009 (pre-eruption); 0.55 m left lateral slip along the dike mentioned above for the period from January 2009 and January 2011 (covering the eruption); -0.025 m dip slip along the dike for the period from January 2011 through March 2013 (post-eruption). In all bestfit models the dike is oriented with a 75° westward dip. These data have respective RMS misfit values of 5.49 cm, 12.38 cm and 6.90 cm for each modeled period. During the time period that includes the eruption the volcano most likely experienced a combination of slip and inflation below the edifice which created a large scar at the surface down the northern flank of the volcano. All models that a dipping dike may be experiencing a combination of inflation and oblique slip below the edifice which augments the possibility of a westward collapse in the future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventional vehicles are creating pollution problems, global warming and the extinction of high density fuels. To address these problems, automotive companies and universities are researching on hybrid electric vehicles where two different power devices are used to propel a vehicle. This research studies the development and testing of a dynamic model for Prius 2010 Hybrid Synergy Drive (HSD), a power-split device. The device was modeled and integrated with a hybrid vehicle model. To add an electric only mode for vehicle propulsion, the hybrid synergy drive was modified by adding a clutch to carrier 1. The performance of the integrated vehicle model was tested with UDDS drive cycle using rule-based control strategy. The dSPACE Hardware-In-the-Loop (HIL) simulator was used for HIL simulation test. The HIL simulation result shows that the integration of developed HSD dynamic model with a hybrid vehicle model was successful. The HSD model was able to split power and isolate engine speed from vehicle speed in hybrid mode.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is remarkable that there are no deployed military hybrid vehicles since battlefield fuel is approximately 100 times the cost of civilian fuel. In the commercial marketplace, where fuel prices are much lower, electric hybrid vehicles have become increasingly common due to their increased fuel efficiency and the associated operating cost benefit. An absence of military hybrid vehicles is not due to a lack of investment in research and development, but rather because applying hybrid vehicle architectures to a military application has unique challenges. These challenges include inconsistent duty cycles for propulsion requirements and the absence of methods to look at vehicle energy in a holistic sense. This dissertation provides a remedy to these challenges by presenting a method to quantify the benefits of a military hybrid vehicle by regarding that vehicle as a microgrid. This innovative concept allowed for the creation of an expandable multiple input numerical optimization method that was implemented for both real-time control and system design optimization. An example of each of these implementations was presented. Optimization in the loop using this new method was compared to a traditional closed loop control system and proved to be more fuel efficient. System design optimization using this method successfully illustrated battery size optimization by iterating through various electric duty cycles. By utilizing this new multiple input numerical optimization method, a holistic view of duty cycle synthesis, vehicle energy use, and vehicle design optimization can be achieved.