7 resultados para PROPOSED APPROACH
em Digital Commons - Michigan Tech
Resumo:
The novel approach to carbon capture and storage (CCS) described in this dissertation is a significant departure from the conventional approach to CCS. The novel approach uses a sodium carbonate solution to first capture CO2 from post combustion flue gas streams. The captured CO2 is then reacted with an alkaline industrial waste material, at ambient conditions, to regenerate the carbonate solution and permanently store the CO2 in the form of an added value carbonate mineral. Conventional CCS makes use of a hazardous amine solution for CO2 capture, a costly thermal regeneration stage, and the underground storage of supercritical CO2. The objective of the present dissertation was to examine each individual stage (capture and storage) of the proposed approach to CCS. Study of the capture stage found that a 2% w/w sodium carbonate solution was optimal for CO2 absorption in the present system. The 2% solution yielded the best tradeoff between the CO2 absorption rate and the CO2 absorption capacity of the solutions tested. Examination of CO2 absorption in the presence of flue gas impurities (NOx and SOx) found that carbonate solutions possess a significant advantage over amine solutions, that they could be used for multi-pollutant capture. All the NOx and SOx fed to the carbonate solution was able to be captured. Optimization studies found that it was possible to increase the absorption rate of CO2 into the carbonate solution by adding a surfactant to the solution to chemically alter the gas bubble size. The absorption rate of CO2 was increased by as much as 14%. Three coal combustion fly ash materials were chosen as the alkaline industrial waste materials to study the storage CO2 and regeneration the absorbent. X-ray diffraction analysis on reacted fly ash samples confirmed that the captured CO2 reacts with the fly ash materials to form a carbonate mineral, specifically calcite. Studies found that after a five day reaction time, 75% utilization of the waste material for CO2 storage could be achieved, while regenerating the absorbent. The regenerated absorbent exhibited a nearly identical CO2 absorption capacity and CO2 absorption rate as a fresh Na2CO3 solution.
Resumo:
Virtualization has become a common abstraction layer in modern data centers. By multiplexing hardware resources into multiple virtual machines (VMs) and thus enabling several operating systems to run on the same physical platform simultaneously, it can effectively reduce power consumption and building size or improve security by isolating VMs. In a virtualized system, memory resource management plays a critical role in achieving high resource utilization and performance. Insufficient memory allocation to a VM will degrade its performance dramatically. On the contrary, over-allocation causes waste of memory resources. Meanwhile, a VM’s memory demand may vary significantly. As a result, effective memory resource management calls for a dynamic memory balancer, which, ideally, can adjust memory allocation in a timely manner for each VM based on their current memory demand and thus achieve the best memory utilization and the optimal overall performance. In order to estimate the memory demand of each VM and to arbitrate possible memory resource contention, a widely proposed approach is to construct an LRU-based miss ratio curve (MRC), which provides not only the current working set size (WSS) but also the correlation between performance and the target memory allocation size. Unfortunately, the cost of constructing an MRC is nontrivial. In this dissertation, we first present a low overhead LRU-based memory demand tracking scheme, which includes three orthogonal optimizations: AVL-based LRU organization, dynamic hot set sizing and intermittent memory tracking. Our evaluation results show that, for the whole SPEC CPU 2006 benchmark suite, after applying the three optimizing techniques, the mean overhead of MRC construction is lowered from 173% to only 2%. Based on current WSS, we then predict its trend in the near future and take different strategies for different prediction results. When there is a sufficient amount of physical memory on the host, it locally balances its memory resource for the VMs. Once the local memory resource is insufficient and the memory pressure is predicted to sustain for a sufficiently long time, a relatively expensive solution, VM live migration, is used to move one or more VMs from the hot host to other host(s). Finally, for transient memory pressure, a remote cache is used to alleviate the temporary performance penalty. Our experimental results show that this design achieves 49% center-wide speedup.
Resumo:
The use of conventional orifice-plate meter is typically restricted to measurements of steady flows. This study proposes a new and effective computational-experimental approach for measuring the time-varying (but steady-in-the-mean) nature of turbulent pulsatile gas flows. Low Mach number (effectively constant density) steady-in-the-mean gas flows with large amplitude fluctuations (whose highest significant frequency is characterized by the value fF) are termed pulsatile if the fluctuations have a direct correlation with the time-varying signature of the imposed dynamic pressure difference and, furthermore, they have fluctuation amplitudes that are significantly larger than those associated with turbulence or random acoustic wave signatures. The experimental aspect of the proposed calibration approach is based on use of Coriolis-meters (whose oscillating arm frequency fcoriolis >> fF) which are capable of effectively measuring the mean flow rate of the pulsatile flows. Together with the experimental measurements of the mean mass flow rate of these pulsatile flows, the computational approach presented here is shown to be effective in converting the dynamic pressure difference signal into the desired dynamic flow rate signal. The proposed approach is reliable because the time-varying flow rate predictions obtained for two different orifice-plate meters exhibit the approximately same qualitative, dominant features of the pulsatile flow.
Resumo:
Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished. Prediction of radiated fields from transmission lines has not previously been studied from a panoptical power system perspective. The application of BPL technologies to overhead transmission lines would benefit greatly from an ability to simulate real power system environments, not limited to the transmission lines themselves. Presently circuitbased transmission line models used by EMTP-type programs utilize Carson’s formula for a waveguide parallel to an interface. This formula is not valid for calculations at high frequencies, considering effects of earth return currents. This thesis explains the challenges of developing such improved models, explores an approach to combining circuit-based and electromagnetics modeling to predict radiated fields from transmission lines, exposes inadequacies of simulation tools, and suggests methods of extending the validity of transmission line models into very high frequency ranges. Electromagnetics programs are commonly used to study radiated fields from transmission lines. However, an approach is proposed here which is also able to incorporate the components of a power system through the combined use of EMTP-type models. Carson’s formulas address the series impedance of electrical conductors above and parallel to the earth. These equations have been analyzed to show their inherent assumptions and what the implications are. Additionally, the lack of validity into higher frequencies has been demonstrated, showing the need to replace Carson’s formulas for these types of studies. This body of work leads to several conclusions about the relatively new study of BPL. Foremost, there is a gap in modeling capabilities which has been bridged through integration of circuit-based and electromagnetics modeling, allowing more realistic prediction of BPL performance and radiated fields. The proposed approach is limited in its scope of validity due to the formulas used by EMTP-type software. To extend the range of validity, a new set of equations must be identified and implemented in the approach. Several potential methods of implementation have been explored. Though an appropriate set of equations has not yet been identified, further research in this area will benefit from a clear depiction of the next important steps and how they can be accomplished.
Resumo:
This thesis develops an effective modeling and simulation procedure for a specific thermal energy storage system commonly used and recommended for various applications (such as an auxiliary energy storage system for solar heating based Rankine cycle power plant). This thermal energy storage system transfers heat from a hot fluid (termed as heat transfer fluid - HTF) flowing in a tube to the surrounding phase change material (PCM). Through unsteady melting or freezing process, the PCM absorbs or releases thermal energy in the form of latent heat. Both scientific and engineering information is obtained by the proposed first-principle based modeling and simulation procedure. On the scientific side, the approach accurately tracks the moving melt-front (modeled as a sharp liquid-solid interface) and provides all necessary information about the time-varying heat-flow rates, temperature profiles, stored thermal energy, etc. On the engineering side, the proposed approach is unique in its ability to accurately solve – both individually and collectively – all the conjugate unsteady heat transfer problems for each of the components of the thermal storage system. This yields critical system level information on the various time-varying effectiveness and efficiency parameters for the thermal storage system.
Resumo:
This dissertation has three separate parts: the first part deals with the general pedigree association testing incorporating continuous covariates; the second part deals with the association tests under population stratification using the conditional likelihood tests; the third part deals with the genome-wide association studies based on the real rheumatoid arthritis (RA) disease data sets from Genetic Analysis Workshop 16 (GAW16) problem 1. Many statistical tests are developed to test the linkage and association using either case-control status or phenotype covariates for family data structure, separately. Those univariate analyses might not use all the information coming from the family members in practical studies. On the other hand, the human complex disease do not have a clear inheritance pattern, there might exist the gene interactions or act independently. In part I, the new proposed approach MPDT is focused on how to use both the case control information as well as the phenotype covariates. This approach can be applied to detect multiple marker effects. Based on the two existing popular statistics in family studies for case-control and quantitative traits respectively, the new approach could be used in the simple family structure data set as well as general pedigree structure. The combined statistics are calculated using the two statistics; A permutation procedure is applied for assessing the p-value with adjustment from the Bonferroni for the multiple markers. We use simulation studies to evaluate the type I error rates and the powers of the proposed approach. Our results show that the combined test using both case-control information and phenotype covariates not only has the correct type I error rates but also is more powerful than the other existing methods. For multiple marker interactions, our proposed method is also very powerful. Selective genotyping is an economical strategy in detecting and mapping quantitative trait loci in the genetic dissection of complex disease. When the samples arise from different ethnic groups or an admixture population, all the existing selective genotyping methods may result in spurious association due to different ancestry distributions. The problem can be more serious when the sample size is large, a general requirement to obtain sufficient power to detect modest genetic effects for most complex traits. In part II, I describe a useful strategy in selective genotyping while population stratification is present. Our procedure used a principal component based approach to eliminate any effect of population stratification. The paper evaluates the performance of our procedure using both simulated data from an early study data sets and also the HapMap data sets in a variety of population admixture models generated from empirical data. There are one binary trait and two continuous traits in the rheumatoid arthritis dataset of Problem 1 in the Genetic Analysis Workshop 16 (GAW16): RA status, AntiCCP and IgM. To allow multiple traits, we suggest a set of SNP-level F statistics by the concept of multiple-correlation to measure the genetic association between multiple trait values and SNP-specific genotypic scores and obtain their null distributions. Hereby, we perform 6 genome-wide association analyses using the novel one- and two-stage approaches which are based on single, double and triple traits. Incorporating all these 6 analyses, we successfully validate the SNPs which have been identified to be responsible for rheumatoid arthritis in the literature and detect more disease susceptibility SNPs for follow-up studies in the future. Except for chromosome 13 and 18, each of the others is found to harbour susceptible genetic regions for rheumatoid arthritis or related diseases, i.e., lupus erythematosus. This topic is discussed in part III.
Resumo:
Complex human diseases are a major challenge for biological research. The goal of my research is to develop effective methods for biostatistics in order to create more opportunities for the prevention and cure of human diseases. This dissertation proposes statistical technologies that have the ability of being adapted to sequencing data in family-based designs, and that account for joint effects as well as gene-gene and gene-environment interactions in the GWA studies. The framework includes statistical methods for rare and common variant association studies. Although next-generation DNA sequencing technologies have made rare variant association studies feasible, the development of powerful statistical methods for rare variant association studies is still underway. Chapter 2 demonstrates two adaptive weighting methods for rare variant association studies based on family data for quantitative traits. The results show that both proposed methods are robust to population stratification, robust to the direction and magnitude of the effects of causal variants, and more powerful than the methods using weights suggested by Madsen and Browning [2009]. In Chapter 3, I extended the previously proposed test for Testing the effect of an Optimally Weighted combination of variants (TOW) [Sha et al., 2012] for unrelated individuals to TOW &ndash F, TOW for Family &ndash based design. Simulation results show that TOW &ndash F can control for population stratification in wide range of population structures including spatially structured populations, is robust to the directions of effect of causal variants, and is relatively robust to percentage of neutral variants. In GWA studies, this dissertation consists of a two &ndash locus joint effect analysis and a two-stage approach accounting for gene &ndash gene and gene &ndash environment interaction. Chapter 4 proposes a novel two &ndash stage approach, which is promising to identify joint effects, especially for monotonic models. The proposed approach outperforms a single &ndash marker method and a regular two &ndash stage analysis based on the two &ndash locus genotypic test. In Chapter 5, I proposed a gene &ndash based two &ndash stage approach to identify gene &ndash gene and gene &ndash environment interactions in GWA studies which can include rare variants. The two &ndash stage approach is applied to the GAW 17 dataset to identify the interaction between KDR gene and smoking status.