2 resultados para POLY(AMIDOAMINE) DENDRIMERS

em Digital Commons - Michigan Tech


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thermo-responsive materials have been of interest for many years, and have been studied mostly as thermally stimulated drug delivery vehicles. Recently acrylate and methacrylates with pendant ethylene glycol methyl ethers been studied as thermo responsive materials. This work explores thermo response properties of hybrid nanoparticles of one of these methacrylates (DEGMA) and a block copolymer with one of the acrylates (OEGA), with gold nanoparticle cores of different sizes. We were interested in the effects of gold core size, number and type of end groups that anchored the chains to the gold cores, and location of bonding sites on the thermo-response of the polymer. To control the number and location of anchoring groups we using a type of controlled radical polymerization called Reversible Addition Fragmentation Transfer (RAFT) Polymerization. Smaller gold cores did not show the thermo responsive behavior of the polymer but the gold cores did seem to self-assemble. Polymer anchored to larger gold cores did show thermo responsivity. The anchoring end group did not alter the thermoresponsivity but thiol-modified polymers stabilized gold cores less well than chains anchored by dithioester groups, allowing gold cores to grow larger. Use of multiple bonding groups stabilized the gold core. Using block copolymers we tested the effects of number of thiol groups and the distance between them. We observed that the use of multiple anchoring groups on the block copolymer with a sufficiently large gold core did not prevent thermo responsive behavior of the polymer to be detected which allows a new type of thermo-responsive hybrid nanoparticle to be used and studied for new applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are interested in the syntheses of new complexes and in their characterization by single crystal X-ray diffraction techniques. Once we understand the structures, studies aimed at understanding uses of these complexes in the field of catalytic epoxidation using complexes soluble in water and syntheses of thin films (not assessed) were conducted. The syntheses, characterization and catalytic properties of a series of mononuclear, dinuclear and tetranuclear molybdenum and tungsten oxo complexes are described. The syntheses and structural characterization of two copper coordination polymers with 3,5-dihydroxylbenzoate ligand, and five paddlewheel shaped copper dendrimers coordinated with Fréchet-type dendrons are also detailed. The background of this dissertation is outlined in Chapter 1. Chapter 2 describes the syntheses, and characterization of two new mononuclear molybdenum(VI) and tungsten(VI) oxo complexes, MoO2Cl2(OPPh2CH2OH)2, and WO2Cl2(OPPh2CH2OH)2, bearing hydrophilic phosphine oxide ligand. The catalytic properties of these complexes for the epoxidation of cis-cyclooctene were also studied. Two new dinuclear molybdenum(VI) and tungsten(VI) oxo complexes Mo2O4Cl2[(HOCH2)PhPOO]2, and (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, bearing organophosphinate ligand are described in Chapter 3 and 4. Chapter 4 and 5 describes the syntheses and characterization of tetranuclear molybdenum(V) oxo complexes bearing various organophosphinate ligands. The catalytic abilities of these complexes for the epoxidation of cis-cyclooctene in the presence of hydrogen peroxide as oxidant were explored as well. Various spectroscopic methods, such as IR, UV-vis, and NMR are used to characterize the nature of these complexes. Crystal structures of compounds MoO2Cl2(OPPh2CH2OH)2, WO2Cl2(OPPh2CH2OH)2, Mo2O4Cl2[(HOCH2)PhPOO]2, (CH3O)2(O)W(μ-O)(μ-O2PPh2)2W(O)(CH3O)2, and Mo4(µ3-O)4(µ-O2PR2)4O4 (R=Ph, Me, ClCH2, o-C6H4(CH2)2) are also presented. The syntheses, and structural characterization of three copper(II) coordination polymers bearing 3,5-dihydroxybenzoate ligand are described in Chapter 6. Two copper(II) coordination polymers, [Cu2(3,5-dhb)2(pyridine)4]n, and [Cu2(3,5-dhb)4]n were afforded based on different amount of pyridine used in the reaction. The structures of these complexes are further built into 2D or 3D networks via inter or intra hydrogen bonds. The syntheses and structural characterization of the zinc(II) monomer, Zn(3,5-dhb)2(pyridine)2 is also described in this Chapter. Chapter 7 describes the syntheses, and characterization of five dendronized dicopper complexes bearing different generations of Fréchet-type dendrons. The structures of 3,5- bis(benzoyloxl)benzoic acid, 3,5-(PhCOO)2PhCOOH (G1), Cu2(3,5-dhb)4(THF)2, Cu2(G1)4(pyridine)2, and Cu2(G1)4(CH3OH)2 were characterized unambiguously by single X-ray diffraction. In addition, all compounds were characterized by FT-IR, UV-vis spectroscopy and elemental analyses.