3 resultados para PHOSPHATE ROCKS
em Digital Commons - Michigan Tech
Resumo:
Ecological disturbances may be caused by a range of biotic and abiotic factors. Among these are disturbances that result from human activities such as the introduction of exotic plants and land management activities. This dissertation addresses both of these types of disturbance in ecosystems in the Upper Peninsula of Michigan. Invasive plants are a significant cause of disturbance at Pictured Rocks Natural Lakeshore. Management of invasive plants is dependent on understanding what areas are at risk of being invaded, what the consequences of an invasion are on native plant communities and how effective different tools are for managing the invasive species. A series of risk models are described that predict three stages of invasion (introduction, establishment and spread) for eight invasive plant species at Pictured Rocks National Lakeshore. These models are specific to this location and include species for which models have not previously been produced. The models were tested by collecting point data throughout the park to demonstrate their effectiveness for future detection of invasive plants in the park. Work to describe the impacts and management of invasive plants focused on spotted knapweed in the sensitive Grand Sable Dunes area of Pictured Rocks National Lakeshore. Impacts of spotted knapweed were assessed by comparing vegetation communities in areas with varying amounts of spotted knapweed. This work showed significant increases in species diversity in areas invaded by knapweed, apparently as a result of the presence of a number of non-dune species that have become established in spotted knapweed invaded areas. An experiment was carried out to compare annual spot application of two herbicides, Milestone® and Transline® to target spotted knapweed. This included an assessment of impacts of this type of treatment on non-target species. There was no difference in the effectiveness of the two herbicides, and both significantly reduced the density of spotted knapweed during the course of the study. Areas treated with herbicide developed a higher percent cover of grasses during the study, and suffered limited negative impacts on some sensitive dune species such as beach pea and dune stitchwort, and on some other non-dune species such as hawkweed. The use of these herbicides to reduce the density of spotted knapweed appears to be feasible over large scales.
Resumo:
LiFePO4 is a Co-free battery material. Its advantages of low cost, non-toxic and flat discharge plateau show promising for vehicle propulsion applications. A major problem associated with this material is its low electrical conductivity. Use of nanosized LiFePO4 coated with carbon is considered a solution because the nanosized particles have much shorter path for L+ ions to travel from the LiFePO4 crystal lattice to electrolytes. As other nano material powders, however, nano LiFePO4 could have processing and health issues. In order to achieve high electrical conductivity while maintaining a satisfactory manufacturability, the particles should possess both of the nano- and the microcharacteristics correspondingly. These two contradictory requirements could only be fulfilled if the LiFePO4 powders have a hierarchical structure: micron-sized parent particles assembled by nanosized crystallites with appropriate electrolyte communication channels. This study addressed the issue by study of the formation and development mechanisms of the LiFePO4 crystallites and their microstructures. Microwaveassisted wet chemical (MAWC) synthesis approach was employed in order to facilitate the evolvement of the nanostructures. The results reveal that the LiFePO4 crystallites were directly nucleated from amorphous precursors by competition against other low temperature phases, Li3PO4 and Fe3(PO4)2•8H2O. Growth of the crystalline LiFePO4 particles went through oriented attachment first, followed by revised Ostwald ripening and then recrystallization. While recrystallization played the role in growth of well crystallized particles, oriented attachment and revised Ostwald ripening were responsible for formation of the straight edge and plate-like shaped LiFePO4 particles comprised of nanoscale substructure. Oriented attachment and revised Ostwald ripening seemed to be also responsible for clustering the plate-like LiFePO4 particles into a high-level aggregated structure. The finding from this study indicates a hope for obtaining the hierarchical structure of LiFePO4 particles that could exhibit the both micro- and nano- scale characteristics. Future study is proposed to further advance the understanding of the structural development mechanisms, so that they can be manipulated for new LiFePO4 structures ideal for battery application.
Resumo:
Dolomite [CaMg(CO3)2] is an intolerable impurity in phosphate ores due to its MgO content. Traditionally, the Florida phosphate industry has avoided mining high-MgO phosphate reserves due to the lack of an economically viable process for removal of dolomite. However, as the high grade phosphate reserves become depleted, more emphasis is being put on the development of a cost effective method for separating dolomite from high-MgO phosphate ores. In general, the phosphate industry demands a phosphate concentrate containing less than 1%MgO. Dolomite impurities have mineralogical properties that are very similar to the desired phosphate minerals (francolite), making the separation of the two minerals very difficult. Magnesium is primarily found as distinct dolomite-rich pebbles, very fine dolomite inclusions in predominately francolite pebbles, and magnesium substituted into the francolite structure. Jigging is a gravity separation process that attempts to take advantage of the density difference between the dolomite and francolite pebbles. A unique laboratory scale jig was designed and built at Michigan Tech for this study. Through a series of tests it was found that a pulsation rate of 200 pulse/minute, a stroke length of 1 inch, a water addition rate of 0.5gpm, and alumina ragging balls were optimum for this study. To investigate the feasibility of jigging for the removal of dolomite from phosphate ore, two high-MgO phosphate ores were tested using optimized jigging parameters: (1) Plant #1 was sized to 4.00x0.85mm and contained 1.55%MgO; (2) Plant #2 was sized to 3.40mmx0.85mm and contained 3.07% MgO. A sample from each plant was visually separated by hand into dolomite and francolite rich fractions, which were then analyzed to determine the minimum achievable MgO levels. For Plant #1 phosphate ore, a concentrate containing 0.89%MgO was achieved at a recovery of 32.0%BPL. For Plant #2, a phosphate concentrate containing 1.38%MgO was achieved at a recovery of 74.7%BPL. Minimum achievable MgO levels were determined to be 0.53%MgO for Plant #1 and 1.15%MgO for Plant #2.