2 resultados para PHASE PROBE MOLECULES
em Digital Commons - Michigan Tech
Resumo:
The molecular interactions between the host molecule, perthiolated beta-cyclodextrin (CD), and the guest molecules, adamantaneacetic acid (AD) and ferroceneacetic acid (FC), have been inestigated theoretically in both the gas and aqueous phases. The major computations have been carried out at the theoretical levels, RHF/6-31G and B3LYP/6- 31G. MP2 electronic energies were also computed based at the geometries optimized by both the RHF and B3LYP methods in the gas phase to establish a better estimate of the correlation effect. The solvent phase computations were completed at the RHF/6-31G and B3LYP/6-31G levels using the PCM model. The most stable structures optimized in gas phase by both the RHF and B3LYP methods were used for the computations in solution. A method to systematically manipulate the relative position and orientation between the interacting molecules is proposed. In the gas phase, six trials with different host-guest relative positions and orientations were completed successfully with the B3LYP method for both the CD-AD and CD-FC complexes. Only four trials were completed with RHF method. In the gas phase, the best results from the RHF method gives for the association Gibbs free energy (ΔG°) values equal to -32.21kj/mol for CD-AD and -25.73kj/mol for CD-FC. And the best results from the B3LYP method have ΔG° equal to -47.57kj/mol for CD-AD and -41.09kj/mol for CD-FC. The MP2 correction significantly lowers ΔG° based on the geometries from both methods. For the RHF structure, the MP2 computations lowered ΔG° to -60.64kj/mol for CD-AD and -54.10 for CD-FC. For the structure from the B3LYP method, it was reduced to -59.87 kj/mol for CD-AD and -54.84 kj/mol for CDFC. The RHF solvent phase calculations yielded following results: ΔG°(aq) equals 107.2kj/mol for CD-AD and 111.4kj/mol for CD-FC. Compared with the results from the RHF method, the B3LYP method provided clearly better solvent phase results with ΔG° (aq) equal to 38.64kj/mol for CD-AD and 39.61kj/mol for CD-FC. These results qualitatively explain the experimental observations. However quantitatively they are in poor agreement with the experimental values available in the literature and those recently published by Liu et al. And the reason is believed to be omission of hydrophobic contribution to the association. Determining the global geometrical minima for these very large systems was very difficult and computationally time consuming, but after a very thorough search, these were identified. A relevant result of this search is that when the complexes, CD-AD and CD-FC, are formed, the AD and FC molecules are only partially embedded inside the CD cavity. The totally embedded complexes were found to have significantly higher energies. The semiempirical method, ZINDO, was employed to investigate the effect of complexation on the first electronic excitation of CD anchored to a metal nano-particle. The computational results revealed that after complexation to FC, the transition intensity declines to about 25% of the original value, and after complexation with AD, the intensity drops almost 50%. The tighter binding and transition intensity of CD-AD qualitatively agrees with the experimental result that the addition of AD to a solution of CD and FC restores the fluorescence of CD that was quenched by the addition of FC. A method to evaluate the “hydrophobic force” effect is proposed for future work.
Resumo:
Micro-scale, two-phase flow is found in a variety of devices such as Lab-on-a-chip, bio-chips, micro-heat exchangers, and fuel cells. Knowledge of the fluid behavior near the dynamic gas-liquid interface is required for developing accurate predictive models. Light is distorted near a curved gas-liquid interface preventing accurate measurement of interfacial shape and internal liquid velocities. This research focused on the development of experimental methods designed to isolate and probe dynamic liquid films and measure velocity fields near a moving gas-liquid interface. A high-speed, reflectance, swept-field confocal (RSFC) imaging system was developed for imaging near curved surfaces. Experimental studies of dynamic gas-liquid interface of micro-scale, two-phase flow were conducted in three phases. Dynamic liquid film thicknesses of segmented, two-phase flow were measured using the RSFC and compared to a classic film thickness deposition model. Flow fields near a steadily moving meniscus were measured using RSFC and particle tracking velocimetry. The RSFC provided high speed imaging near the menisci without distortion caused the gas-liquid interface. Finally, interfacial morphology for internal two-phase flow and droplet evaporation were measured using interferograms produced by the RSFC imaging technique. Each technique can be used independently or simultaneously when.