4 resultados para PHASE MATERIALS

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this doctoral research is to investigate the internal frost damage due to crystallization pore pressure in porous cement-based materials by developing computational and experimental characterization tools. As an essential component of the U.S. infrastructure system, the durability of concrete has significant impact on maintenance costs. In cold climates, freeze-thaw damage is a major issue affecting the durability of concrete. The deleterious effects of the freeze-thaw cycle depend on the microscale characteristics of concrete such as the pore sizes and the pore distribution, as well as the environmental conditions. Recent theories attribute internal frost damage of concrete is caused by crystallization pore pressure in the cold environment. The pore structures have significant impact on freeze-thaw durability of cement/concrete samples. The scanning electron microscope (SEM) and transmission X-ray microscopy (TXM) techniques were applied to characterize freeze-thaw damage within pore structure. In the microscale pore system, the crystallization pressures at sub-cooling temperatures were calculated using interface energy balance with thermodynamic analysis. The multi-phase Extended Finite Element Modeling (XFEM) and bilinear Cohesive Zone Modeling (CZM) were developed to simulate the internal frost damage of heterogeneous cement-based material samples. The fracture simulation with these two techniques were validated by comparing the predicted fracture behavior with the captured damage from compact tension (CT) and single-edge notched beam (SEB) bending tests. The study applied the developed computational tools to simulate the internal frost damage caused by ice crystallization with the two dimensional (2-D) SEM and three dimensional (3-D) reconstructed SEM and TXM digital samples. The pore pressure calculated from thermodynamic analysis was input for model simulation. The 2-D and 3-D bilinear CZM predicted the crack initiation and propagation within cement paste microstructure. The favorably predicted crack paths in concrete/cement samples indicate the developed bilinear CZM techniques have the ability to capture crack nucleation and propagation in cement-based material samples with multiphase and associated interface. By comparing the computational prediction with the actual damaged samples, it also indicates that the ice crystallization pressure is the main mechanism for the internal frost damage in cementitious materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The increase of atmospheric CO2 has been identified as the primary cause for the observed global warming over the past century. The geological and oceanic sequestration of CO2 has issues, such as cost and leakage as well as effects on sea biota. The ideal solution should be the conversion of CO2 into useful materials. However, most processes require high energy input. Therefore, it is necessary to explore novel processes with low energy demands to convert CO2 to useful solid materials. Amorphous carbon nitride and graphone received much attention due to their unusual structures and properties as well as their potential applications. However, to date there has been no attempt to synthesize those solid materials from CO2. Lithium nitride (Li3N) and lithium imide (Li2NH) are important hydrogen storage materials. However, their optical properties and reactivity has not yet studied. This dissertation research is aimed at the synthesis of carbon nitrides and graphone from CO2 and CO via their reaction with Li3N and Li2NH. The research was focused on (1) the evaluation of Li3N and Li2NH properties, (2) thermodynamic analysis of conversion of carbon dioxide and carbon monoxide into carbon nitride and other solid materials, (3) synthesis of carbon nitride from carbon dioxide, and (4) synthesis of graphone from carbon monoxide. First, the properties of Li3N, Li2NH, and LiNH2 were investigated. The X-ray diffraction measurements revealed that heat-treatment at 500°C introduce a phase transformation of β-Li3N to α-Li3N. Furthermore, the UV-visible absorption evaluation showed that the energy gaps of α-Li3N and β-Li3N are 1.81 and 2.14 eV, respectively. The UV-visible absorption measurements also revealed that energy gaps are 3.92 eV for Li2NH and 3.93 eV for LiNH2. This thermodynamic analysis was performed to predict the reactions. It was demonstrated that the reaction between carbon dioxide and lithium nitride is thermodynamically favorable and exothermic, which can generate carbon nitride and lithium cyanamide. Furthermore, the thermodynamic calculation indicated that the reaction between carbon monoxide and lithium imide can produce graphone and lithium cyanamide along with releasing heat. Based on the above thermodynamic analysis, the experiment of CO2 and Li3N reaction and CO and Li2NH were carried out. It was found that the reaction between CO2 and Li3N is very fast and exothermic. The XRD and element analysis revealed that the products are crystal lithium cyanamide and amorphous carbon nitrides with Li2O and Li2CO3. Furthermore, TEM images showed that carbon nitrides possess layer-structure, namely, it is graphene-structured carbon nitride. It was found that the reaction between Li2NH and CO was also exothermic, which produced graphone instead of carbon nitride. The composition and structures of graphone were evaluated by XRD, element analysis, TEM observation, and Raman spectra.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The research reported in this dissertation investigates the processes required to mechanically alloy Pb1-xSnxTe and AgSbTe2 and a method of combining these two end compounds to result in (y)(AgSbTe2)–(1 - y)(Pb1-xSnxTe) thermoelectric materials for power generation applications. In general, traditional melt processing of these alloys has employed high purity materials that are subjected to time and energy intensive processes that result in highly functional material that is not easily reproducible. This research reports the development of mechanical alloying processes using commercially available 99.9% pure elemental powders in order to provide a basis for the economical production of highly functional thermoelectric materials. Though there have been reports of high and low ZT materials fabricated by both melt alloying and mechanical alloying, the processing-structure-properties-performance relationship connecting how the material is made to its resulting functionality is poorly understood. This is particularly true for mechanically alloyed material, motivating an effort to investigate bulk material within the (y)(AgSbTe2)–(1 - y)(Pb1-xSnx- Te) system using the mechanical alloying method. This research adds to the body of knowledge concerning the way in which mechanical alloying can be used to efficiently produce high ZT thermoelectric materials. The processes required to mechanically alloy elemental powders to form Pb1-xSnxTe and AgSbTe2 and to subsequently consolidate the alloyed powder is described. The composition, phases present in the alloy, volume percent, size and spacing of the phases are reported. The room temperature electronic transport properties of electrical conductivity, carrier concentration and carrier mobility are reported for each alloy and the effect of the presence of any secondary phase on the electronic transport properties is described. An mechanical mixing approach for incorporating the end compounds to result in (y)(AgSbTe2)–(1-y)(Pb1-xSnxTe) is described and when 5 vol.% AgSbTe2 was incorporated was found to form a solid solution with the Pb1-xSnxTe phase. An initial attempt to change the carrier concentration of the Pb1-xSnxTe phase was made by adding excess Te and found that the carrier density of the alloys in this work are not sensitive to excess Te. It has been demonstrated using the processing techniques reported in this research that this material system, when appropriately doped, has the potential to perform as highly functional thermoelectric material.