1 resultado para Otthera, Johann von, b. 1479 or 80,
em Digital Commons - Michigan Tech
Resumo:
Chapter 1 is used to introduce the basic tools and mechanics used within this thesis. Some historical uses and background are touched upon as well. The majority of the definitions are contained within this chapter as well. In Chapter 2 we consider the question whether one can decompose λ copies of monochromatic Kv into copies of Kk such that each copy of the Kk contains at most one edge from each Kv. This is called a proper edge coloring (Hurd, Sarvate, [29]). The majority of the content in this section is a wide variety of examples to explain the constructions used in Chapters 3 and 4. In Chapters 3 and 4 we investigate how to properly color BIBD(v, k, λ) for k = 4, and 5. Not only will there be direct constructions of relatively small BIBDs, we also prove some generalized constructions used within. In Chapter 5 we talk about an alternate solution to Chapters 3 and 4. A purely graph theoretical solution using matchings, augmenting paths, and theorems about the edgechromatic number is used to develop a theorem that than covers all possible cases. We also discuss how this method performed compared to the methods in Chapters 3 and 4. In Chapter 6, we switch topics to Latin rectangles that have the same number of symbols and an equivalent sized matrix to Latin squares. Suppose ab = n2. We define an equitable Latin rectangle as an a × b matrix on a set of n symbols where each symbol appears either [b/n] or [b/n] times in each row of the matrix and either [a/n] or [a/n] times in each column of the matrix. Two equitable Latin rectangles are orthogonal in the usual way. Denote a set of ka × b mutually orthogonal equitable Latin rectangles as a k–MOELR(a, b; n). We show that there exists a k–MOELR(a, b; n) for all a, b, n where k is at least 3 with some exceptions.