2 resultados para Oscillator strengths
em Digital Commons - Michigan Tech
Resumo:
Hooked reinforcing bars (rebar) are used frequently to carry the tension forces developed in beams and transferred to columns. Research into epoxy coated hooked bars has only been minimally performed and no research has been carried out incorporating the coating process found in ASTM A934. This research program compares hooked rebar that are uncoated, coated by ASTM A775, and coated by ASTM A934. In total, forty-two full size beam-column specimens were created, instrumented and tested to failure. The program was carried out in three phases. The first phase was used to refine the test setup and procedures. Phase two explored the spacing of column ties within the joint region. Phase three explored the three coating types found above. Each specimen included two hooked rebar which were loaded and measured independently for relative rebar slip. The load and displacement of the hooked rebar were analyzed, focusing on behavior at the levels of 30 ksi, 42 ksi and 60 ksi of rebar stress. Statistical and general comparisons were made using the coating types, tie spacing, and rebar stress level. Many of the parameters composing the rebar and concrete were also tested to characterize the components and specimens. All rebar tested met ASTM standards for tensile strength, but the newer ASTM A934 method seemed to produce slightly lower yield strengths. The A934 method also produced coating thicknesses that were very inconsistent and were higher than ASTM maximum limits in many locations. Continuity of coating surfaces was found to be less than 100% for both A775 and A934 rebar, but for different reasons. The many comparisons made did not always produce clear conclusions. The data suggests that the ACI Code (318-05) parameter of 1.2 for including epoxy coating on hooked rebar may need to be raised, possibly to 2.5, but more testing needs to be performed before such a large value change is set forth. This is particularly important as variables were identified which may have a larger influence on rebar capacity than the Development Length, of which the current 1.2 factor modifies. Many suggestions for future work are included throughout the thesis to help guide other researchers in carrying out successful and productive programs which will further the highly understudied topic of hooked rebar.
Resumo:
This research initiative was triggered by the problems of water management of Polymer Electrolyte Membrane Fuel Cell (PEMFC). In low temperature fuel cells such as PEMFC, some of the water produced after the chemical reaction remains in its liquid state. Excess water produced by the fuel cell must be removed from the system to avoid flooding of the gas diffusion layers (GDL). The GDL is responsible for the transport of reactant gas to the active sites and remove the water produced from the sites. If the GDL is flooded, the supply gas will not be able to reach the reactive sites and the fuel cell fails. The choice of water removal method in this research is to exert a variable asymmetrical force on a liquid droplet. As the drop of liquid is subjected to an external vibrational force in the form of periodic wave, it will begin to oscillate. A fluidic oscillator is capable to produce a pulsating flow using simple balance of momentum fluxes between three impinging jets. By connecting the outputs of the oscillator to the gas channels of a fuel cell, a flow pulsation can be imposed on a water droplet formed within the gas channel during fuel cell operation. The lowest frequency produced by this design is approximately 202 Hz when a 20 inches feed-back port length was used and a supply pressure of 5 psig was introduced. This information was found by setting up a fluidic network with appropriate data acquisition. The components include a fluidic amplifier, valves and fittings, flow meters, a pressure gage, NI-DAQ system, Siglab®, Matlab software and four PCB microphones. The operating environment of the water droplet was reviewed, speed of the sound pressure which travels down the square channel was precisely estimated, and measurement devices were carefully selected. Applicable alternative measurement devices and its application to pressure wave measurement was considered. Methods for experimental setup and possible approaches were recommended, with some discussion of potential problems with implementation of this technique. Some computational fluid dynamic was also performed as an approach to oscillator design.