5 resultados para Optimal matching analysis.

em Digital Commons - Michigan Tech


Relevância:

30.00% 30.00%

Publicador:

Resumo:

An extrusion die is used to continuously produce parts with a constant cross section; such as sheets, pipes, tire components and more complex shapes such as window seals. The die is fed by a screw extruder when polymers are used. The extruder melts, mixes and pressures the material by the rotation of either a single or double screw. The polymer can then be continuously forced through the die producing a long part in the shape of the die outlet. The extruded section is then cut to the desired length. Generally, the primary target of a well designed die is to produce a uniform outlet velocity without excessively raising the pressure required to extrude the polymer through the die. Other properties such as temperature uniformity and residence time are also important but are not directly considered in this work. Designing dies for optimal outlet velocity variation using simple analytical equations are feasible for basic die geometries or simple channels. Due to the complexity of die geometry and of polymer material properties design of complex dies by analytical methods is difficult. For complex dies iterative methods must be used to optimize dies. An automated iterative method is desired for die optimization. To automate the design and optimization of an extrusion die two issues must be dealt with. The first is how to generate a new mesh for each iteration. In this work, this is approached by modifying a Parasolid file that describes a CAD part. This file is then used in a commercial meshing software. Skewing the initial mesh to produce a new geometry was also employed as a second option. The second issue is an optimization problem with the presence of noise stemming from variations in the mesh and cumulative truncation errors. In this work a simplex method and a modified trust region method were employed for automated optimization of die geometries. For the trust region a discreet derivative and a BFGS Hessian approximation were used. To deal with the noise in the function the trust region method was modified to automatically adjust the discreet derivative step size and the trust region based on changes in noise and function contour. Generally uniformity of velocity at exit of the extrusion die can be improved by increasing resistance across the die but this is limited by the pressure capabilities of the extruder. In optimization, a penalty factor that increases exponentially from the pressure limit is applied. This penalty can be applied in two different ways; the first only to the designs which exceed the pressure limit, the second to both designs above and below the pressure limit. Both of these methods were tested and compared in this work.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Switching mode power supplies (SMPS) are subject to low power factor and high harmonic distortions. Active power-factor correction (APFC) is a technique to improve the power factor and to reduce the harmonic distortion of SMPSs. However, this technique results in double frequency output voltage variation which can be reduced by using a large output capacitance. Using large capacitors increases the cost and size of the converter. Furthermore, the capacitors are subject to frequent failures mainly caused by evaporation of the electrolytic solution which reduce the converter reliability. This thesis presents an optimal control method for the input current of a boost converter to reduce the size of the output capacitor. The optimum current waveform as a function of weighing factor is found by using the Euler Lagrange equation. A set of simulations are performed to determine the ideal weighing which gives the lowest possible output voltage variation as the converter still meets the IEC-61000-3-2 class-A harmonics requirements with a power factor of 0.8 or higher. The proposed method is verified by the experimental work. A boost converter is designed and it is run for different power levels, 100 W, 200 W and 400 W. The desired output voltage ripple is 10 V peak to peak for the output voltage of 200 Vdc. This ripple value corresponds to a ± 2.5% output voltage ripple. The experimental and the simulation results are found to be quite matching. A significant reduction in capacitor size, as high as 50%, is accomplished by using the proposed method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This dissertation presents the competitive control methodologies for small-scale power system (SSPS). A SSPS is a collection of sources and loads that shares a common network which can be isolated during terrestrial disturbances. Micro-grids, naval ship electric power systems (NSEPS), aircraft power systems and telecommunication system power systems are typical examples of SSPS. The analysis and development of control systems for small-scale power systems (SSPS) lacks a defined slack bus. In addition, a change of a load or source will influence the real time system parameters of the system. Therefore, the control system should provide the required flexibility, to ensure operation as a single aggregated system. In most of the cases of a SSPS the sources and loads must be equipped with power electronic interfaces which can be modeled as a dynamic controllable quantity. The mathematical formulation of the micro-grid is carried out with the help of game theory, optimal control and fundamental theory of electrical power systems. Then the micro-grid can be viewed as a dynamical multi-objective optimization problem with nonlinear objectives and variables. Basically detailed analysis was done with optimal solutions with regards to start up transient modeling, bus selection modeling and level of communication within the micro-grids. In each approach a detail mathematical model is formed to observe the system response. The differential game theoretic approach was also used for modeling and optimization of startup transients. The startup transient controller was implemented with open loop, PI and feedback control methodologies. Then the hardware implementation was carried out to validate the theoretical results. The proposed game theoretic controller shows higher performances over traditional the PI controller during startup. In addition, the optimal transient surface is necessary while implementing the feedback controller for startup transient. Further, the experimental results are in agreement with the theoretical simulation. The bus selection and team communication was modeled with discrete and continuous game theory models. Although players have multiple choices, this controller is capable of choosing the optimum bus. Next the team communication structures are able to optimize the players’ Nash equilibrium point. All mathematical models are based on the local information of the load or source. As a result, these models are the keys to developing accurate distributed controllers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Water resource depletion and sanitation are growing problems around the world. A solution to both of these problems is the use of composting latrines, as it requires no water and has been recommended by the World Health Organization as an improved sanitation technology. However, little analysis has been done on the decomposition process occurring inside the latrine, including what temperatures are reached and what variables most affect the composting process. Having better knowledge of how outside variables affect composting latrines can aid development workers on the choice of implementing such technology, and to better educate the users on the appropriate methods of maintenance. This report presents a full, detailed construction manual and temperature data analysis of a double vault composting latrine. During the author’s two year Peace Corps service in rural Paraguay he was involved with building twenty one composting latrines, and took detailed temperature readings and visual observations of his personal latrine for ten months. The author also took limited temperature readings of fourteen community member’s latrines over a three month period. These data points were analyzed to find correlations between compost temperatures and several variables. The two main variables found to affect the compost temperatures were the seasonal trends of the outside temperatures, and the mixing and addition of moisture to the compost. Outside seasonal temperature changes were compared to those of the compost and a linear regression was performed resulting in a R2-value of 0.89. Mixing the compost and adding water, or a water/urine mixture, resulted in temperature increases of the compost 100% of the time, with seasonal temperatures determining the rate and duration of the temperature increases. The temperature readings were also used to find events when certain temperatures were held for sufficient amounts of time to reach total pathogen destruction in the compost. Four different events were recorded when a temperature of 122°F (50°C) was held for at least 24 hours, ensuring total pathogen destruction in that area of the compost. One event of 114.8°F (46°C) held for one week was also recorded, again ensuring total pathogen destruction. Through the analysis of the temperature data, however, it was found that the compost only reached total pathogen destruction levels during ten percent of the data points. Because of this the storage time recommendation outlined by the World Health Organization should be complied with. The WHO recommends storing compost for 1.5-2 years in climates with ambient temperatures of 2-20°C (35-68°F), and for at least 1 year with ambient temperatures of 20-35°C (68-95°F). If these storage durations are obtainable the use of the double vault composting latrine is an economical and achievable solution to sanitation while conserving water resources.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of this project is to learn the necessary steps to create a finite element model, which can accurately predict the dynamic response of a Kohler Engines Heavy Duty Air Cleaner (HDAC). This air cleaner is composed of three glass reinforced plastic components and two air filters. Several uncertainties arose in the finite element (FE) model due to the HDAC’s component material properties and assembly conditions. To help understand and mitigate these uncertainties, analytical and experimental modal models were created concurrently to perform a model correlation and calibration. Over the course of the project simple and practical methods were found for future FE model creation. Similarly, an experimental method for the optimal acquisition of experimental modal data was arrived upon. After the model correlation and calibration was performed a validation experiment was used to confirm the FE models predictive capabilities.