4 resultados para Optical Frequency References, Mass, Density, interferometry, mass, silicon spheres, volume

em Digital Commons - Michigan Tech


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the field of photonics, two new types of material structures, photonic crystals and metamaterials, are presently of great interest. Both are studied in the present work, which focus on planar magnetic materials in the former and planar gradient metamaterials in the latter. These planar periodic structures are easy to handle and integrate into optical systems. The applications are promising field for future optical telecommunication systems and give rise to new optical, microwave and radio technologies. The photonic crystal part emphasizes the utilization of magnetic material based photonic crystals due to its remarkable magneto-optical characteristics. Bandgaps tuning by magnetic field in bismuth-gadolinium-substituted lutetium iron garnet (Bi0.8 Gd0.2 Lu2.0 Fe5 O12) based one- dimensional photonic crystals are investigated and demonstrated in this work. Magnetic optical switches are fabricated and tested. Waveguide formulation for band structure in magneto photonic crystals is developed. We also for the first time demonstrate and test two- dimensional magneto photonic crystals optical. We observe multi-stopbands in two- dimensional photonic waveguide system and study the origin of multi-stopbands. The second part focus on studying photonic metamaterials and planar gradient photonic metamaterial design. We systematically study the effects of varying the geometry of the fishnet unit cell on the refractive index in optical frequency. It is the first time to design and demonstrate the planar gradient structure in the high optical frequency. Optical beam bending using planar gradient photonic metamaterials is observed. The technologies needed for the fabrication of the planar gradient photonic metamaterials are investigated. Beam steering devices, shifter, gradient optical lenses and etc. can be derived from this design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The dissipation of high heat flux from integrated circuit chips and the maintenance of acceptable junction temperatures in high powered electronics require advanced cooling technologies. One such technology is two-phase cooling in microchannels under confined flow boiling conditions. In macroscale flow boiling bubbles will nucleate on the channel walls, grow, and depart from the surface. In microscale flow boiling bubbles can fill the channel diameter before the liquid drag force has a chance to sweep them off the channel wall. As a confined bubble elongates in a microchannel, it traps thin liquid films between the heated wall and the vapor core that are subject to large temperature gradients. The thin films evaporate rapidly, sometimes faster than the incoming mass flux can replenish bulk fluid in the microchannel. When the local vapor pressure spike exceeds the inlet pressure, it forces the upstream interface to travel back into the inlet plenum and create flow boiling instabilities. Flow boiling instabilities reduce the temperature at which critical heat flux occurs and create channel dryout. Dryout causes high surface temperatures that can destroy the electronic circuits that use two-phase micro heat exchangers for cooling. Flow boiling instability is characterized by periodic oscillation of flow regimes which induce oscillations in fluid temperature, wall temperatures, pressure drop, and mass flux. When nanofluids are used in flow boiling, the nanoparticles become deposited on the heated surface and change its thermal conductivity, roughness, capillarity, wettability, and nucleation site density. It also affects heat transfer by changing bubble departure diameter, bubble departure frequency, and the evaporation of the micro and macrolayer beneath the growing bubbles. Flow boiling was investigated in this study using degassed, deionized water, and 0.001 vol% aluminum oxide nanofluids in a single rectangular brass microchannel with a hydraulic diameter of 229 µm for one inlet fluid temperature of 63°C and two constant flow rates of 0.41 ml/min and 0.82 ml/min. The power input was adjusted for two average surface temperatures of 103°C and 119°C at each flow rate. High speed images were taken periodically for water and nanofluid flow boiling after durations of 25, 75, and 125 minutes from the start of flow. The change in regime timing revealed the effect of nanoparticle suspension and deposition on the Onset of Nucelate Boiling (ONB) and the Onset of Bubble Elongation (OBE). Cycle duration and bubble frequencies are reported for different nanofluid flow boiling durations. The addition of nanoparticles was found to stabilize bubble nucleation and growth and limit the recession rate of the upstream and downstream interfaces, mitigating the spreading of dry spots and elongating the thin film regions to increase thin film evaporation.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Excessive Cladophora growth in the Great Lakes has led to beach fouling and the temporary closure of nuclear power plants and has been associated with avian botulism and the persistence of human pathogens. As the growth-limiting nutrient for Cladophora, phosphorus is the appropriate target for management efforts. Dreissenids (zebra and quagga mussels) have the ability to capture particulate phase phosphorus (otherwise unavailable to Cladophora) and release it in a soluble, available form. The significance of this potential nutrient source is, in part, influenced by the interplay between phosphorus flux from the mussel bed and turbulent mixing in establishing the phosphorus levels to which Cladophora is exposed. It is hypothesized that under quiescent conditions phosphorus will accumulate near the sediment-water interface, setting up vertical phosphorus gradients and favorable conditions for resource delivery to Cladophora. These gradients would be eliminated under conditions of wind mixing, reducing the significance of the dreissenid-mediated nutrient contribution. Soluble reactive phosphorus (SRP) levels were monitored over dreissenid beds (densities on the order of 350•m-2 and 3000∙m-2) at a site 8 m deep in Lake Michigan. Monitoring was based on the deployment of Modified Hesslein Samplers which collected samples for SRP analysis over a distance of 34 cm above the bottom in 2.5 cm intervals. Deployment intervals were established to capture a wind regime (calm, windy) that persisted for an interval consistent with the sampler equilibration time of 7 hours. Results indicate that increased mussel density leads to an increased concentration boundary layer; increased wind speed leads to entrainment of the concentration boundary layer; and increased duration of quiescent periods leads to an increased concentration boundary layer. This concentration boundary layer is of ecological significance and forms in the region inhabited by Cladophora

Relevância:

50.00% 50.00%

Publicador:

Resumo:

Vapor sensors have been used for many years. Their applications range from detection of toxic gases and dangerous chemicals in industrial environments, the monitoring of landmines and other explosives, to the monitoring of atmospheric conditions. Microelectrical mechanical systems (MEMS) fabrication technologies provide a way to fabricate sensitive devices. One type of MEMS vapor sensors is based on mass changing detection and the sensors have a functional chemical coating for absorbing the chemical vapor of interest. The principle of the resonant mass sensor is that the resonant frequency will experience a large change due to a small mass of gas vapor change. This thesis is trying to build analytical micro-cantilever and micro-tilting plate models, which can make optimization more efficient. Several objectives need to be accomplished: (1) Build an analytical model of MEMS resonant mass sensor based on micro-tilting plate with the effects of air damping. (2) Perform design optimization of micro-tilting plate with a hole in the center. (3) Build an analytical model of MEMS resonant mass sensor based on micro-cantilever with the effects of air damping. (4) Perform design optimization of micro-cantilever by COMSOL. Analytical models of micro-tilting plate with a hole in the center are compared with a COMSOL simulation model and show good agreement. The analytical models have been used to do design optimization that maximizes sensitivity. The micro-cantilever analytical model does not show good agreement with a COMSOL simulation model. To further investigate, the air damping pressures at several points on the micro-cantilever have been compared between analytical model and COMSOL model. The analytical model is inadequate for two reasons. First, the model’s boundary condition assumption is not realistic. Second, the deflection shape of the cantilever changes with the hole size, and the model does not account for this. Design optimization of micro-cantilever is done by COMSOL.