17 resultados para Open Science

em Digital Commons - Michigan Tech


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Climate science and climate change are included in the Next Generation Science Standards, curriculum standards that were released in 2013. How to incorporate these topics, especially climate change, has been a difficult task for teachers. A team of scientists are studying aerosols in the free troposphere; what their properties are, how they change while in the atmosphere and where they came from. Lessons were created based on this real, ongoing scientific research being conducted in the Azores. During these activities, students are exposed to what scientists actually do in the form of videos and participate in similar tasks such as conducting experiments, collecting data, and analyzing data. At the conclusion of the lessons, students will form conclusions based on the evidence they have at the time.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of intriguing open-ended quick-write prompts within the Basotho science classroom could potentially provide a way for secondary teachers in Lesotho to have a time-efficient alternative to stimulate student thinking and increase critical thinking or application of scientific principles. Writing can be used as a powerful means to improve the achievement of students across many subject areas, including the sciences (Moore, 1993; Rivard, 1994; Rillero, Zambo, Cleland, and Ryan, 1996; Greenstein, 2013). This study focuses on the use of a non-traditional nor extensively studied writing method that could potentially support learning in science. A quasi-experimental research design, with a control and experimental group, was applied. The study was conducted at two schools, with one experimental classroom in one school and a second control group classroom in the second school for a period of 4 weeks. 51 Form B (US Grade 9 equivalent) students participated as the experimental group and 43 Form B students as the control group. In an effort to assess learning achievement, a 1 hour (35 mark) pre-test evaluation was made by and given to students by Basotho teachers at the beginning of this study to have an idea of student’s previous knowledge. Topics covered were Static Electricity, Current Electricity, Electromagnetic Waves, and Chemistry of Water. After the experimental trial period, an almost completely identical post-test evaluation was given to students in the same fashion to observe and compare gains in achievement. Test data was analyzed using an inferential statistics procedure that compared means and gains in knowledge made by the experimental and control groups. Difference between the gains of mean pre-test and post-test scores were statistically significant within each group, but were not statistically significant when the control and experimental groups were compared. Therefore, there was no clear practical effect. Qualitative data from teachers’ journals and students’ written feedback provides insight on the assessments, incorporation of the teaching method, and the development of participating students. Both mid and post-study student feedback shows that students had an overall positive and beneficial experience participating in this activity. Assessments and teacher journals showed areas of strength and weaknesses in student learning and on differences in teaching styles. They also helped support some feedback claims made by students. Areas of further research and improvement of the incorporation of this teaching method in the Basotho secondary science classroom are explored.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

MiTEP, the Michigan Teacher Excellence Program, provides current teachers the opportunity to partner with Michigan Technological University to obtain graduate credit towards a Master’s degree in applied science education. In exchange, the university collects data on the implementation of inquiry and earth science concepts into science classrooms. This paper documents my experience within this program, including how it has affected my personal and professional learning.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study investigated the effect that the video game Portal 2 had on students understanding of Newton’s Laws and their attitudes towards learning science during a two-week afterschool program at a science museum. Using a pre/posttest and survey design, along with instructor observations, the results showed a statistically relevant increase in understanding of Newton’s Laws (p=.02<.05) but did not measure a relevant change in attitude scores. The data and observations suggest that future research should pay attention to non-educational aspects of video games, be careful about the amount of time students spend in the game, and encourage positive relationships with game developers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report has two major objectives. First, the results of an action research project conducted at my high school concerning the use of graphic organizers and their effects on students' written expression abilities. The findings from this action research project indicate that the use of graphic organizers can prove beneficial to students. The second major objective of this report is to provide a reflection and evaluation of my experiences as a participant in the Michigan Teacher Excellence Program (MiTEP). This program provided middle and high school science teachers with an opportunity to develop research based pedagogy techniques and develop the skill necessary to serve as leaders within the public school science community. The action research project described in the first chapter of this report was a collaborative project I participated in during my enrollment in ED 5705 at Michigan Technological University. I worked closely with two other teachers in my building - Brytt Ergang and James Wright. We met several times to develop a research question, and a procedure for testing our question. Each of us investigated how the use of graphic organizers by students in our classroom might impact their performance on writing assessments. We each collected data from several of our classes. In my case I collected data from 2 different classes over 2 different assignments. Our data was collected and the results analyzed separately from classroom to classroom. After the individual classroom data and corresponding analysis was compiled my fellow collaborators and I got together to discuss our findings. We worked together to write a conclusion based on our combined results in all of our classes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This report is a summary of the effects of the Michigan Teacher Excellence Program (MITEP) on me as a science educator. The first chapter is a report of an action research project jointly authored with two other science teachers participating in the MITEP program titled “Station Activities and Misconceptions in the Chemistry Classroom.” The second chapter is a reflective essay evaluating the impacts of the MITEP experience on my teaching skills and practice, knowledge of science education and science education research, and leadership skills. The most significant impacts were a dramatic increase in my earth science content knowledge, a deeper understanding of inquiry-based teaching methods, and an expanded professional network of science educators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The first chapter consists of an action research report submitted by Rebecca Joyce, Kari Luckett, and Claudia Witt as part of the Action Research class taken through the Michigan Teacher Excellence Program (MiTEP) during the winter of 2013. The research involved the use of stations to address student misconceptions in urban high school chemistry classrooms. Chapter two contains a personal reflection on the MiTEP program and how it has affected teaching strategies/practices, personal confidence, and professional relationships.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As environmental problems became more complex, policy and regulatory decisions become far more difficult to make. The use of science has become an important practice in the decision making process of many federal agencies. Many different types of scientific information are used to make decisions within the EPA, with computer models becoming especially important. Environmental models are used throughout the EPA in a variety of contexts and their predictive capacity has become highly valued in decision making. The main focus of this research is to examine the EPA’s Council for Regulatory Modeling (CREM) as a case study in addressing science issues, particularly models, in government agencies. Specifically, the goal was to answer the following questions: What is the history of the CREM and how can this information shed light on the process of science policy implementation? What were the goals of implementing the CREM? Were these goals reached and how have they changed? What have been the impediments that the CREM has faced and why did these impediments occur? The three main sources of information for this research came from observations during summer employment with the CREM, document review and supplemental interviews with CREM participants and other members of the modeling community. Examining a history of modeling at the EPA, as well as a history of the CREM, provides insight into the many challenges that are faced when implementing science policy and science policy programs. After examining the many impediments that the CREM has faced in implementing modeling policies, it was clear that the impediments fall into two separate categories, classic and paradoxical. The classic impediments include the more standard impediments to science policy implementation that might be found in any regulatory environment, such as lack of resources and changes in administration. Paradoxical impediments are cyclical in nature, with no clear solution, such as balancing top-down versus bottom-up initiatives and coping with differing perceptions. These impediments, when not properly addressed, severely hinder the ability for organizations to successfully implement science policy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The purpose of this project was to investigate the effect of using of data collection technology on student attitudes towards science instruction. The study was conducted over the course of two years at Madison High School in Adrian, Michigan, primarily in college preparatory physics classes, but also in one college preparatory chemistry class and one environmental science class. A preliminary study was conducted at a Lenawee County Intermediate Schools student summer environmental science day camp. The data collection technology used was a combination of Texas Instruments TI-84 Silver Plus graphing calculators and Vernier LabPro data collection sleds with various probeware attachments, including motion sensors, pH probes and accelerometers. Students were given written procedures for most laboratory activities and were provided with data tables and analysis questions to answer about the activities. The first year of the study included a pretest and posttest measuring student attitudes towards the class they were enrolled in. Pre-test and post-test data were analyzed to determine effect size, which was found to be very small (Coe, 2002). The second year of the study focused only on a physics class and used Keller’s ARCS model for measuring student motivation based on the four aspects of motivation: Attention, Relevance, Confidence and Satisfaction (Keller, 2010). According to this model, it was found that there were two distinct groups in the class, one of which was motivated to learn and the other that was not. The data suggest that the use of data collection technology in science classes should be started early in a student’s career, possibly in early middle school or late elementary. This would build familiarity with the equipment and allow for greater exploration by the student as they progress through high school and into upper level science courses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The reported research project involved studying how teaching science using demonstrations, inquiry-based cooperative learning groups, or a combination of the two methods affected sixth grade students’ understanding of air pressure and density. Three different groups of students were each taught the two units using different teaching methods. Group one learned about the topics through both demonstrations and inquirybased cooperative learning, whereas group two only viewed demonstrations, and group three only participated in inquiry-based learning in cooperative learning groups. The study was designed to answer the following two questions: 1. Which teaching strategy works best for supporting student understanding of air pressure and density: demonstrations, inquirybased labs in cooperative learning groups, or a combination of the two? 2. And what effect does the time spent engaging in a particular learning experience (demonstrations or labs) have on student learning? Overall, the data did not provide sufficient evidence that one method of learning was more effective than the others. The results also suggested that spending more time on a unit does not necessarily equate to a better understanding of the concepts by the students. Implications for science instruction are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the realm of computer programming, the experience of writing a program is used to reinforce concepts and evaluate ability. This research uses three case studies to evaluate the introduction of testing through Kolb's Experiential Learning Model (ELM). We then analyze the impact of those testing experiences to determine methods for improving future courses. The first testing experience that students encounter are unit test reports in their early courses. This course demonstrates that automating and improving feedback can provide more ELM iterations. The JUnit Generation (JUG) tool also provided a positive experience for the instructor by reducing the overall workload. Later, undergraduate and graduate students have the opportunity to work together in a multi-role Human-Computer Interaction (HCI) course. The interactions use usability analysis techniques with graduate students as usability experts and undergraduate students as design engineers. Students get experience testing the user experience of their product prototypes using methods varying from heuristic analysis to user testing. From this course, we learned the importance of the instructors role in the ELM. As more roles were added to the HCI course, a desire arose to provide more complete, quality assured software. This inspired the addition of unit testing experiences to the course. However, we learned that significant preparations must be made to apply the ELM when students are resistant. The research presented through these courses was driven by the recognition of a need for testing in a Computer Science curriculum. Our understanding of the ELM suggests the need for student experience when being introduced to testing concepts. We learned that experiential learning, when appropriately implemented, can provide benefits to the Computer Science classroom. When examined together, these course-based research projects provided insight into building strong testing practices into a curriculum.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today’s technology is evolving at an exponential rate. Everyday technology is finding more inroads into our education system. This study seeks to determine if having access to technology, including iPad tablets and a teacher's physical science webpage resources (videos, PowerPoint® presentations, and audio podcasts), assists ninth grade high school students in attaining greater comprehension and improved scientific literacy. Comprehension of the science concepts was measured by comparing current student pretest and post test scores on a teacher-written assessment. The current student post test scores were compared with prior classes’ (2010-2011 and 2009-2010) to determine if there was a difference in outcomes between the technology interventions and traditional instruction. Students entered responses to a technology survey that measured intervention usage and their perception of helpfulness of each intervention. The current year class’ mean composite scores, between the pretest and post test increased by 6.9 points (32.5%). Student composite scores also demonstrated that the interventions were successful in helping a majority of students (64.7%) attain the curriculum goals. The interventions were also successful in increasing student scientific literacy by meeting all of Bloom's cognitive levels that were assessed. When compared with prior 2010-2011 and 2009-2010 classes, the current class received a higher mean post test score indicating a positive effect of the use of technological interventions. The survey showed a majority of students utilized at least some of the technology interventions and perceived them as helpful, especially the videos and PowerPoint® presentations.