5 resultados para One-Sided Growth
em Digital Commons - Michigan Tech
Resumo:
This research looks at the use of the Interactive Student Notebook (ISN) in the math classroom and the impact on student achievement as part of the MiTEP program. A reflective critical analysis of the MiTEP program discusses impact on teacher pedagogy, leadership, and connections to people and resources. The purpose of the study stemmed from the lack of student retention, poor organizational skills, and the students’ inability to demonstrate college readiness skills such as how to study, completing homework, and thinking independently. Motivation also stemmed from teacher frustration. The research was conducted at Linden Grove Middle School in Kalamazoo Michigan in a strategic math class. Twenty-two sixth graders, thirty-two seventh graders, and forty eighth graders were part of the study.Students were given the Strategic Math Inventory (SMI) test in week 1 of the class and again at the end of a 12 week marking period. Students participated in an attitude survey to record their feelings about the use of the ISN in the strategic math classroom. The data compared the control group (the previous year’s [2012-2013] growth data) to the experimental group, the current year’s (2013-2014) growth data. Both groups were statistically similar in that the mean average was about a 4th grade level equivalency and the groups had similar numbers of grade level students. The significant findings were in the amount of growth made using the ISN. The control group started with a mean average of 586.6 and ended with a mean average of 697.1, making about one year’s growth from a 4th to a 5th grade level equivalency. The experimental group started with a mean average of 585.2 and ended with a mean average of 744.2, making about two years growth from a 4th to a 6th grade level equivalency. This is double the growth of the control group. The Cohen’s test resulted in a score of 0.311 which describes that the teaching method, the use of the ISN in the math classroom had a medium impact on student growth.
Resumo:
This report reviews literature on the rate of convergence of maximum likelihood estimators and establishes a Central Limit Theorem, which yields an O(1/sqrt(n)) rate of convergence of the maximum likelihood estimator under somewhat relaxed smoothness conditions. These conditions include the existence of a one-sided derivative in θ of the pdf, compared to up to three that are classically required. A verification through simulation is included in the end of the report.
Resumo:
One-dimensional nanostructures initiated new aspects to the materials applications due to their superior properties compared to the bulk materials. Properties of nanostructures have been characterized by many techniques and used for various device applications. However, simultaneous correlation between the physical and structural properties of these nanomaterials has not been widely investigated. Therefore, it is necessary to perform in-situ study on the physical and structural properties of nanomaterials to understand their relation. In this work, we will use a unique instrument to perform real time atomic force microscopy (AFM) and scanning tunneling microscopy (STM) of nanomaterials inside a transmission electron microscopy (TEM) system. This AFM/STM-TEM system is used to investigate the mechanical, electrical, and electrochemical properties of boron nitride nanotubes (BNNTs) and Silicon nanorods (SiNRs). BNNTs are one of the subjects of this PhD research due to their comparable, and in some cases superior, properties compared to carbon nanotubes. Therefore, to further develop their applications, it is required to investigate these characteristics in atomic level. In this research, the mechanical properties of multi-walled BNNTs were first studied. Several tests were designed to study and characterize their real-time deformation behavior to the applied force. Observations revealed that BNNTs possess highly flexible structures under applied force. Detailed studies were then conducted to understand the bending mechanism of the BNNTs. Formations of reversible ripples were observed and described in terms of thermodynamic energy of the system. Fracture failure of BNNTs were initiated at the outermost walls and characterized to be brittle. Second, the electrical properties of individual BNNTs were studied. Results showed that the bandgap and electronic properties of BNNTs can be engineered by means of applied strain. It was found that the conductivity, electron concentration and carrier mobility of BNNTs can be tuned as a function of applied stress. Although, BNNTs are considered to be candidate for field emission applications, observations revealed that their properties degrade upon cycles of emissions. Results showed that due to the high emission current density, the temperature of the sample was increased and reached to the decomposition temperature at which the B-N bonds start to break. In addition to BNNTs, we have also performed in-situ study on the electrochemical properties of silicon nanorods (SiNRs). Specifically, lithiation and delithiation of SiNRs were studied by our STM-TEM system. Our observations showed the direct formation of Li22Si5 phases as a result of lithium intercalation. Radial expansion of the anode materials were observed and characterized in terms of size-scale. Later, the formation and growth of the lithium fibers on the surface of the anode materials were observed and studied. Results revealed the formation of lithium islands inside the ionic liquid electrolyte which then grew as Li dendrite toward the cathode material.
Resumo:
Red pine (Pinus resinosa Ait.) plantations have been established in Michigan with expectations of mixed final product goals: pulpwood, boltwood and possibly sawlogs. The effects of alternative treatments on tree and stand attributes were examined in: the Atlantic Mine trial, thinned in spring 2006 with three alternatives: (1) every fifth row removal plus crown thinning, (2) every third row removal plus crown thinning and (3) every third row removal plus thinning from below; the Crane Lake trial, thinned in fall 2004 with two alternatives: (1) every third row removal and (2) every third row removal plus thinning from above; the Middle Branch East trial, thinned in fall 2004 with two alternatives: (1) every third row removal plus one in three remaining trees and (2) every third row removal plus one in five remaining trees. All trials included control plots where no thinning was applied. The trials were established in the field as a randomized complete block experiments, in which individual trees were measured in 3-4 fixed-area plots located within each treatment unit. Growth responses of diameter at breast height, height, live crown length, stand basal area and stand volume were examined along with their increments. The Tukey multiple comparison test was used to detect significant differences between treatments in their effect on tree growth response. The results showed that diameter increment increased with increasing thinning intensity and was significantly larger in thinned plots compared to unthinned. Treatments did not substantially affect average tree height increment. Stand basal area increment was significantly larger in the control plot only the year after the harvest. Volume increment was significantly larger in controls, but did not differ considerably among remaining treatments. However, the ratio of volume increment to standing volume was significantly smaller in unthinned plots compared to thinned. Since thinning treatments in all trials hardly ever differed significantly in their effect on stand growth response, mainly due to the relatively short time of the evaluation, heavier thinnings should be favored due to higher volume increment rates and shorter time needed to reach desirable diameters. Nevertheless, economic evaluation based on obtained results will be conducted in the future in order to make final decisions about the most profitable treatment.
Resumo:
In this study, we isolated eight copper-resistant bacteria from Torch Lake sediment contaminated by copper mine tailings (stamp sand). Sequence analysis of gyrB and rpoD genes revealed that these organisms are closer to various Pseudomonas species. These eight bacterial isolates were also resistant to zinc, cesium, lead, arsenate and mercury. Further characterization showed that all the strains produced plant growth promoting indole-3-acetic acid (IAA), iron chelating siderophore and solubilized mineral phosphate and metals. The effect of bacterial inoculation on plant growth and copper uptake by maize (Zea mays) and sunflower (Helianthus annuus) was investigated using one of the isolates (Pseudomonas sp. TLC 6-6.5-4) with higher IAA production and phosphate and metal soubilization, which resulted in a significant increase in copper accumulation in maize and sunflower, and an increase in the total biomass of maize. Genes involved in copper resistance of Pseudomonas sp. TLC 6-6.5-4 was analyzed by transposon mutational analysis. Two copper sensitive mutants with significant reduction in copper resistance were identified: CSM1, a mutant disrupted in trp A gene (tryptophan synthase alpha subunit); CSM2, a mutant disrupted in clpA gene (ATP-dependent Clp protease). Proteomic and metabolomic analysis were performed to identify biochemical and molecular mechanisms involved in copper resistance using CSM2 due to its lower minimum inhibitory concentration compared with CSM1 and the wild type. The effect of different bacterial inoculation methods on plant growth, copper uptake and soil enzyme activities was investigated. Four different delivery methods were used including soil inoculation (before or after plant emergence), seed coating and root dipping. Soil inoculation before sowing seeds and coating seeds with PGPB led to better growth of maize, higher copper uptake and an increase in soil invertase and dehydrogenase activities. Proteomic and metabolomic analyses were performed to investigate the effect of bacterial inoculation on maize grown in normal soil and stamp sand. Our results revealed that bacterial inoculation led to environment-dependent effects on maize proteome and metabolome.